• Title/Summary/Keyword: 그래펜

Search Result 1, Processing Time 0.017 seconds

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.