• Title/Summary/Keyword: 그라우트 주입비

Search Result 45, Processing Time 0.025 seconds

A Study on the Waterproof Method to the Leakage Type of Underground Structure by Cement Grouting (지하구조물의 누수유형에 따른 시멘트그라우팅 방수기법에 관한 연구)

  • 천병식;최춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.181-196
    • /
    • 2001
  • 지하구조물에 있어서 누수사고의 빈번한 발생 및 상습화 경향에도 불구하고 현재 국내에서 사용되고 있는 누수보수방법은 누수유형에 관계없이 일괄적으로 동일한 처리방식으로 보수하는 상황으로서 지하구조물 누수에 대하여 누수 유형별로 보수방법을 달리하는 적극적인 해결방안의 모색이 필요하다. 따라서, 본 연구에서는 지하구조물의 누수보수에 있어서 방수 그라우트재의 공학적 특성을 파악하고 현장상황에 적합한 방수그라우팅 기법을 수립하여 누수유형별로 적용한 사례를 중심으로 적용성을 고찰하였다. 방수그라우팅 적용사례를 분석한 결과 지하구조물의 누수방지를 위하여 누수상황 및 누수유형에 따라 주입재의 배합비를 적절히 변화시켜 주입재와 현장상황에 적합한 방수그라우팅 기법을 병행 적용하는 것이 확실한 방수효과를 얻을 수 있으며, 주입목표구간에 대해 단계적으로 수회로 나누어 순차적인 그라우팅과 가능한 한 저압, 소량, 장시간에 걸쳐 주입하는 것이 방수그라우팅 효과를 증대시킬 수 있는 것으로 판단된다. 또한, 현장 적용결과로부터 기존 방수이론의 영향요소에 추가하여 물시멘트비, 주입재의 입경, 주입시간 및 주입량, 혼화재 사용여부, 주입차수 등에 대한 다양한 영향요소의 검토가 필요한 것으로 판단된다.

  • PDF

Analysis of Permeation Efficiency in Soil for OPC and Non-Pollution MIS Grouts by Laboratory Model Test (실내모형시험을 통한 OPC와 친환경 MIS 그라우트의 지반 침투성능 분석)

  • Ahn, Jung-Ho;Lim, Heui-Dae;Choi, Dong-Nam;Song, Young-Su
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.307-315
    • /
    • 2012
  • In this paper, a laboratory model test was conducted to evaluate grouting efficiency of ordinary portland cement(OPC) and micro cement used in MIS(Micro-Injection Process System). For this research, a injection equipment was developed for pressure permeation which can evenly simulate various grouting tests in a laboratory and suggested a standard for the production of the test specimen. Using the injection device, the laboratory injection tests of grouts were prepared with water/cement ratio of 1:1, 2:1, 3:1, 4:1, and 5:1. The analysis of injection test for pressure permeation showed that the efficiency of injection increases linearly as the water/cement ratio increases. Comparison of efficiency of the injection indicates that MIS with a relatively smaller average diameter shows more efficient injection than the OPC. In the low ratio of water/cement as 2:1~1:1, the injection efficiency of OPC was especially poor. Also, a nonlinear grout volume-injection time is represented by a hyperbolic model and grout volume predicted by hyperbolic model was compared with the value measured. From the comparison, it shows that the hyperbolic model has the potential of evaluating the efficiency of grouting.

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.

Verification of Reinforcement with Grouting Materials in a Small Scale Reservoir Dike using Surface and Borehole Electrical Resistivity survey (지표 및 시추공 전기비저항 탐사를 중심으로)

  • Song, Sung-Ho;Yong, Hwan-Ho;Kim, Yang-Bin
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • To verify the reinforcing effect of grouting materials composed of colloid cement and ordinary portland cement on the water leakage region in a small scale dike, we performed a tubecasing method and applied surface electrical resistivity survey including electrical resistivity tomography (ERT) to find resistivity variation before and after grouting. Hydraulic conductivities after grouting show 10 times lower than those of before grouting. These variation indicates that the cement grout blocks the leakage pathway effectively. As the results of dipole-dipole resistivity survey along the dike, resistivity distribution after grouting did not represent noticeable spatial variation in time. Resistivity monitoring results at the dike with vertical electrical sounding (VES) showed that the region of decreasing apparent resistivity was occupied by the grout after grouting. Predicted resistivities from the inversion of ERT data well matched with results of VES at the same regions. From the ERT using check holes to inspect the effect of grouting, we could find that the ERT is quite effective to identify spatially the grout region in a dike.

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

Characteristics of High-viscosity Grouting Materials for Rock Joint Reinforcement of Deep Tunnel (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 재료의 특성)

  • Yoon, Inkook;Moon, Junho;Lee, Junsu;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.59-63
    • /
    • 2021
  • This study presented the characteristics and additive effects of the grout with mixing ratio for developing of high-efficiency grouting technology under high depth conditions. The laboratory investigation were conducted with Portland cement (OPC) and micro cement (S8000-E) including viscosity experiments, particle size analysis experiments, Gel-Time experiments and uniaxial compressive strength experiments. As a result of the viscosity experiment, it was shown that OPC is advantageous in terms of viscosity, but S8000-E is suitable when considering the passage of rock joint intervals through particle size analysis. The Gel-Time experiment shows that it is not that difficult with injection as a grout material even when silica fume (SF) was applied. The strength of the cured material is improved as increase in the content of silica fium (SF). Within the range of the study, the optimal mixing ratio obtained through various experiments is S8000-E, w/c=70%, silica fium (SF)=6%, and 7 days.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

Effect of Anti-washout Admixture Implementation on Backfill Aggregates on Underwater Structures (수중 구조물 골재 속채움 시 수중 불분리성 혼화제의 적용 효과)

  • Kim, Ukgie;Choi, Changho;Park, Bonggeun;Li, Zhuang;Cho, Samdeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.59-67
    • /
    • 2014
  • With increasing underwater structure construction, there is high interest in offshore foundation and underwater grout and various study has been done in this area. For grout materials constructed underwater, it may be washed away by water or easily disturbed and material separation phenomenon during curing period always happens. As a result, it is difficult to ensure construction quality and this has a significant influence on the design strength of structure. In this study, to understand application effects of anti-washout admixture for the preplaced construction method, where grout is injected in monopile after filled with aggregates, laboratory tests on bleeding and compressive strength of anti-washout admixture were performed under various test conditions varying size of aggregate, water and cement ratio and admixture, and test results were compared and evaluated.