• Title/Summary/Keyword: 균질유동 모델

Search Result 44, Processing Time 0.028 seconds

Development of New Correlation and Assessment of Correlations for Two-Phase Pressure Drop in Rectangular Microchannels (사각 마이크로채널 내의 2 상 유동 압력강하 상관식의 검증 및 개발)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • There are two kinds of models in two-phase pressured drop; homogeneous flow model and separated flow model. Many previous researchers have developed correlations for two-phase pressure drop in a microchannel. Most correlations were modified Lockhart and Martinelli's correlation, which was based on the separated flow model. In this study, experiments for adiabatic liquid water and nitrogen gas flow in rectangular microchannels were conducted to investigate two-phase pressure drop in the rectangular microchannels. Two-phase frictional pressure drop in the rectangular microchannels is highly related with flow regime. Homogeneous model with six two-phase viscosity models: $Owen^{(21)}$'s, $MacAdams^{(22)}$'s, Cicchitti et ${al.}^{(23)}$'s, Dukler et ${al.}^{(24)}$'s, Beattie and ${Whalley}^{(25)}$'s, Lin et ${al.}^{(26)}$'s models and six separated flow models: Lockhart and $Martinelli^{(27)}$'s, ${Chisholm}^{(31)}$'s, Zhang et ${al.,}^{(15)}$'s, Lee and ${Lee}^{(5)}$'s, Moriyama and ${Inue}^{(4)}$'s, Qu and $Mudawar^{(8)}$'s models were assessed with our experimental data. The best two-phase viscosity model is Beattie and Whalley's model. The best separated flow model is Qu and Mudawar's correlation. Flow regime dependency in both homogeneous and separated flow models was observed. Therefore, new flow pattern based correlations for both homogeneous and separated flow models were individually proposed.

불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 유한 요소 모델링

  • 정병주;김준모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.342-346
    • /
    • 2002
  • 불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 연구를 위해 하나의 지하수 유동-용질 이동 연동 수치 모델이 제시되었다. 이 수치 모델은 밀도 의존적 지하수 유동 지배 방정식, 염분 이동 지배 방정식 및 농도와 밀도의 관계식, 그리고 유한 요소법에 기초하여 개발되었다. 서로 다른 두가지 성질의 불포화 대수층이 고려되었다. 하나는 사질토층 위에 점토층이 존재하는 층상 대수층이고, 다른 하나는 사질토층과 점토층이 혼합된 두가지 물질로 구성된 균질화된 대수층이다. 수치모델의 결과는 층상 불균질성 (layered heterogeneity)가 해안 대수층 내에서의 밀도의존적 지하수 유동과 염분 이동에 있어서 매우 중요한 역할을 하고 있음을 보여준다. 그러한 층상 불균질성의 효과는 사질토층과 점토층과의 현저한 수리학적 및 수리역학적 성질의 차이에 기인한다 따라서 실제 해안 대수층 내에서 관찰되는 점토층을 적절히 고려하는 것이 보다 합리적고 타당한 해안 대수층내에서의 밀도 의존적 지하수 유동 및 염분 이동 해석을 가능하게 할 것이다.

  • PDF

A computational study on compressible flow of humid air around airfoil (익형 주위의 압축성 습공기 유동에 대한 수치 해석적 연구)

  • ;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • 습공기에 포함된 수증기가 상(Phase)변화를 일으킬 때 잠열이 발생하고 이 잠열은 익형 주위의 압축성 유동 상태량들을 변화시키므로, 이러한 열 증가가 유동에 끼치는 영향에 대하여 수치해석을 통하여 연구 수행하였다. 수치해석은 Rusak 과 Lee [1]가 최근에 연구 수행한 미교란 방법(small-disturbance approach)에 근거하여 이루어졌다. 고전적 핵 생성 모델과 작은 물방울 성장(droplet growth)모델을 이용한 이 방법에서는 비평형 균질 응축과정에서 일어나는 열 방출을 묘사한다. 응축에 의한 열전달, 압축성 유동의 운동에너지, 그리고 유동의 열적 상태량들 사이에서 일어나는 비선형 상호영향을 조사하고, 또한 주어진 문제를 지배가호 있는 상사 파라미터들을 제시하였다. 계산 결과들은 Euler 방정식을 사용하여 얻은 선행 수치계산들과 비교하여 잘 일치됨을 보였다. 상사법칙은 유동 동역학과 응축 상태량들이 상당히 비슷하게 거동하는 다양한 유동 형태들을 제안한다. 압축성 습공기 유동은 유체기계에 사용되는 익형들의 공력 성능을 증가시키는데 응용될 수 있다.

관류형증기발생기 불안정성 해석모델 개발

  • 강한옥;강형석;조봉현;이두정;배윤영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.425-430
    • /
    • 1998
  • SMART 관류형증기발생기의 유동 불안정성을 분석할 수 있는 시간영역-비선형 해석모델을 개발하였다. 해석모델은 일차계통 모델을 포함하고 있으며 이차측 튜브 양단에 일정압력 경계조건을 이용하고 내부에서는 평형 균질 이상유동 모델을 도입하였다. 기존의 정상 상태 및 임계조건에 대한 실험 결과와 개발된 해석모델 모델을 이용한 계산 결과를 비교한 뒤 임계점 이후 나타나는 진동의 특성을 분석하였다. 개발된 해석모델은 SMART 관류형증기발생기에서 발생할 수 있는 유동 진동의 특성과 영향을 파악하고 유동 불안정성을 막기 위한 입구 오리피스 설계의 목적에 활용할 수 있을 것이다.

  • PDF

CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics (이수의 유동 특성 분석을 위한 고체-액체 2상 유동의 전산유체역학적 유효성 검토)

  • Choi, Yong-Seok;Park, Jae-Hyoun;Bae, Jae-Hwan;Lee, Bong-Hee;Kim, Jeong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.611-618
    • /
    • 2018
  • In this study, numerical analysis of solid-liquid two-phase flow was conducted as a preliminary step to analyze the flow characteristics of drilling fluid using the commercial CFD code, ANSYS CFX 14.5. The homogeneous model and separated flow model were used to simulate solid-liquid two-phase flow phenomena. In the separated flow model, Gidaspow's drag force model was applied with the kinetic theory model was applied for solid particles. The validity of the numerical model used in this study was verified based on the published experimental results. Numerical analysis was carried out for volume fractions of 0.1 to 0.5 and velocities of 1 to 5 m/s in a horizontal tube with a diameter of 54.9 mm and a length of 3 m. The Pressure drop and volume fraction distribution of solid particles were confirmed. The pressure drop was predicted using the homogeneous model and separated flow model within the MAE of 17.04 % and 8.98 %, respectively. A high volume fraction was observed in the lower part of the tube, and the volume fraction decreased toward the upper part. As velocity increased, variations in volume fraction distribution at varying heights were decreased, and the numerical results predicted these flow characteristics well.

Pressure Loss across Tube Bundles in Two-phase Flow (2상 유동 내 관군에서의 압력 손실)

  • Sim, Woo Gun;Banzragch, Dagdan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.181-189
    • /
    • 2016
  • An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

Large Eddy Simulation of Turbulent Channel Flow Using Inhomogeneous Filter (비균질 필터를 사용한 난류 채널 유동의 Large Eddy Simulation)

  • Lee, Sang-Hwan;Kim, Kwang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1022-1031
    • /
    • 2004
  • The commutation errors by the filtering process in the large eddy simulation are considered. It is compared the conventional filter with the inhomogeneous filter that is devised to reduce the commutation errors. The weighting factor of the inhomogeneous filter suggested by Vasilyev is adopted. Also, using the optimizing function that estimates test filter width to eliminate the dissipations in the region excluding the vicinity of the wall, the flow patterns are analyzed. It is evaluated in simulations of the turbulent channel flow at Reynolds number of 1020, based on friction velocity and channel half height. Results show that the commutation errors can be significantly reduced by using the inhomogeneous filter and the optimized test filter width.

Verification of the Contaminant Transport Numerical Model in Subsurface Soil (토양내 오염물이동 수치모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • The groundwater flow and contaminant transport numerical models have been established for understanding the movement of pollutants in surface soil environment. The numerical solutions were compared with the analytic solutions for the verification and the application of the models. The numerical solutions from the groundwater and transport models agreed welt with analytic solutions. Especially, the results of groundwater flow model were validated in one- and two-dimensional heterogeneous media. Therefore, it will represent well the characteristics of the heterogeneous media in the field applications. Also, the phenomena of the pollutant dispersion represented quite well by the advection and the hydrodynamic dispersion in the results of the transport model. The important input factor is the choice of complicated boundary conditions in operating the numerical models. The numerical results are influenced by the choice of the proper boundary conditions.

Pressure Drop due to Friction in Small Rectangular Channel (미소 사각 채널에서의 마찰 압력 강하)

  • Lim, Tae-Woo;Choi, Jae-Hyuk;Kim, Jun-Hyo;Choi, Yong-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.461-467
    • /
    • 2012
  • An experimental study was carried out to measure frictional pressure drop in flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were performed in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. The homogeneous model well predicted frictional pressure drop within MAE of 29.4 % for the test conditions considered in this work.

A Numerical Model for Steady State Groundwater Flow Near a Radioactive Waste Repository (방사성폐기물 처분장 주변에서 정상상태의 지하수 수치 모델 개발)

  • Suh, Kyung Suk;Lee, Han Soo;Han, Kyung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.103-112
    • /
    • 1989
  • A numerical model for Steady state groundwater flow has been established to understand the groundwater flow phenomena near a radioactive waste repository. The integrated finite difference method based on a network composed of nodes and members was applied to investigate groundwater flow in homogeneous, heterogeneous and layered media. Its numerical solution was in good agreement with analytic solution. Physical phenomena associated in the groundwater flow depending on both hydraulic characteristics and effects of fractured zone were also investigated. A method by which feasible groundwater flow paths can be identified was developed. This method used the composite network for the geologic media near a repository and the direction of computed groudwater velocity. Groundwater velocity and travel time were predicted for the possible pathway form a repository to a biosphere.

  • PDF