• Title/Summary/Keyword: 균일 액적

Search Result 43, Processing Time 0.029 seconds

Group Ignition of Liquid Fuel Droplets Cloud (액체연료 액적군의 집단 점화)

  • 박용열;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2376-2384
    • /
    • 1992
  • A theoretical analysis is carried out to predict the characteristics of transient ignition phenomena for the spherical fuel droplets cloud with non-uniform droplet size and number density distribution. Numerical calculations are performed for various cases depending on the combinations of the major parameters such as ambient temperature and initial distributions of droplet size and number density. The results of present study show that the ignition delay decreases for higher ambient temperature and smaller droplet size. Droplets cloud of hollow type with outer concentrated distribution ignites most rapidly.

A Study on the Uniform Metal-Droplet Deposition Using Laser (레이저를 이용한 균일 금속액적 적층에 관한 연구)

  • 유성복;김용욱;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.667-670
    • /
    • 2002
  • Uniform metal-droplet deposition using laser is analyzed. Using the variation principle and modeling the semi-solid phase as a non-Netwonian slurry, this model can greatly save the computational expenses that conventional numerical procedures have suffered from. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of the falling distance and time.

  • PDF

Experimental Studies on Electrohydrodynamic Atomization of CIGS Nanoparticle Precursor (CIGS 나노입자를 포함한 전구체의 전기수력학적 분무에 관한 실험적 연구)

  • Woo, Jihoon;Yoon, Sukgoo;Kim, Hoyoumg
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.41.1-41.1
    • /
    • 2010
  • 전기수력학적 분무를 이용한 액적 미립화 기술은 나노사이즈의 액적 형성, 쿨롱 반발력에 의한 균일한 액적 형성, 그리고 향상된 액적 타겟팅을 가능하게 한다. 따라서 이를 이용하여 매우 균일한 박막 코팅이 가능하다. 이러한 점에 힘입어 현재 진공 공정으로 제작되고 있는 CIGS태양전지의 광흡수층을 비진공 공정중 하나인 전기수력학적 미립화를 이용하여 실험하였다. Ethanol-based 의 CIGS나노 입자를 포함하는 콜로이드 상태의 전구체를 이용하여 적절히 가열된 몰리브덴 배면 전극위에 적용하였다. 미립화한 액적은 접지된 몰리브덴 층에 부착되는 즉시 증발하여 CIGS입자를 남긴다. 여기서 가장 중요하게 다루어야 할 조건은 기판의 온도, 인가 전압, 전구체의 유량이다. 분사 모드는 Cone-jet을 적용하였으며 5~15kV의 인가 전압에서 1ml/hr내외의 유량을 공급하여 3분 이내에 적절한 광흡수층 두께인 1마이크론 내외에 도달할 수 있다. 이와같은 조건으로 형성된 박막층에 관한 SEM image를 통해 다른 비진공 코팅 방식과 비교하였다.

  • PDF

The effects of non-uniform droplets distribution on the characteristics of group combustion for liquid fuel droplets cloud (비균일 액적분포가 액적군의 집단연소 특성에 미치는 영향)

  • 김호영;전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.479-487
    • /
    • 1987
  • In order to predict the effects of droplets distributions such as number density and droplets size on group combustion characteristics and flame structure for liquid fuel sprays, modifications of group combustions model were made by changing the droplets distributions from uniform to non-uniform. Various droplets distribution models were adopted in this analysis to examine the effect of number density distribution on combustion characteristics and the difference between uniform and non-uniform droplets size distributions for a spherical droplets cloud. As results of present study, hollow droplets could with outer concentrating distribution has shorter total combustion time compare with the case of solid droplets cloud with inner concentrating distribution. Uniform droplets size distribution model predicts the shorter total combustion time compare with non-uniform droplets size distribution model, and the uniform droplets size distribution model may be used to predict the total combustion time for the droplets cloud containing larger initial size of droplets.

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

The Effects of Barley Tea Concentration and Atomizing Pressure on the Atomization with Two Fluid Nozzle Spray Gun (이류식(二流式) 노즐에서 보리차 추출액(抽出液)의 농도(濃度) 및 분무(噴霧) 압력(壓力)이 분무화(噴霧化)에 미치는 영향(影響))

  • Lee, Jeong-Cheol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.342-347
    • /
    • 1983
  • The effects of barley tea concentration and atomizing air pressure on the size, homogeneity and distribution of the sprayed droplets were investigated. An equation relating mean diameter (${\overline{D}}$) with the concentration where the coefficient a and b were determined empirically. As the operating air pressure was increased, the mean diameter of the droplets decreased and finally reached the limiting mean diameter, $36{\mu}m$ at 15.7% barley tea concentration. The homogeneity of the droplets increased with the operating air pressure, increase and it was decreased steadily as the soluble solid concentration increased up to 20% and markedly over 20% at every operating air pressure. The distribution ($P_D$) of sprayed droplets related with the droplet size as the following exponential equation; $P_D$ = e 1nD + f where e and f are empirical constants.

  • PDF

Generation of uniform Fine Droplets Under Spindle Mode in Electrohydrodynamic Atomization (스핀들 모드하의 전기수력학적 미립화를 통한 균일 미세액적 생성)

  • Lee, Sang-Yong;Kim, Myeong-Chan;Kim, Sang-Su;Kim, Yu-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.923-932
    • /
    • 2001
  • A series of experiments were conducted to generate fine liquid(water) drops through the electrohydrodynamic atomization process. The atomization mode depended on flow rate and DC voltage input. For water, having electric conductivity larger than 10(sup)-7S/m, the spindle mode turned out to be the only mode to generate uniform-size drops within the range of 30-450 microns that have wide applications. Within this mode, both the uniformity and the fineness of drops were improved at an optimum voltage input for a given flow rate. This optimum voltage increased with increasing of the liquid flow rate. Another important parameter considered was the nozzle material with different electric conductivity and liquid wettability. A stainless-steel nozzle (the material with high electric conductivity and high liquid wettability) and a silica nozzle (the electrically non-conducting material with low liquid wettability) were tested and compared; and more uniform drops could be obtained with the silica nozzle.