• Title/Summary/Keyword: 균열 확률

Search Result 135, Processing Time 0.02 seconds

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Evalustion and Prediction for the Fatigue crack Initiation and Growth Life by Reliability Approach (I) -Statistical Consideration for Fatigue Crack Growth Life- (신뢰성 공학적 피로 균열의 발생, 진전 수명 평가 및 예측에 관한 연구 ( I ) -피로 균열 진전 수명의 통계학적 분포 특성-)

  • 권재도;최선호;황재석;곽상국;전경옥;장재영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1583-1591
    • /
    • 1990
  • Life prediction and residual life prediction of structures of machines are one of the most strongly world wide needed problems as requirement in the stage of slowly developing economy which comes after rapidly and highly developing stage. For the purpose of statistical life prediction, fatigue test was conducted under the 4 stress levels, and for each stress level, about 20 specimens are used. The statistical properties of crack growth parameter m and C in the fatigue crack growth law of da/dN=C(.DELTA.K)sup m/, and the relationship between m and C, and the statistical distribution pattern of fatigue crack growth rate can be obtained by experimental results.

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

A study on the analysis of the failure probability based on the concept of loss probability (결손확률모델에 의한 파손확률 해석에 관한 연구)

  • 신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2037-2047
    • /
    • 1991
  • Strength is not simply a single given value but rather is a statistical one with certain distribution functions. This is because it is affected by many unknown factors such as size, shape, stress distribution, and combined stresses. In this study, a model of loss probability is proposed in view of the fact that one of the fundamental configuration of nature is hexagonal, for example, the shapes of lattice unit, grain, and so on. The model sues the concept of loss of certain element in place of Jayatilaka-Trustrum's length and angle of cracks. Using this model, the loss probability due to each loss of certain elements is obtained. Then, the maximum principal stress is calculated by the finite element method at the centroid of the elements under the tensile load for the 4,095 models of analysis. Finally, the failure probability of the brittle materials is obtained by multiplying the loss probability by the ratio of the maximum principal stress to theoretical tensile strength. Comparison of the result of the Jayatilaka-Trustrum's model and the proposed model shows that the failure probabilities by the two methods are in good agreement. Further, it is shown that the parametric relationship of semi-crack lengths for various degrees of birittleness can be determined. Therefore, the analysis of the failure probability suing the proposed model is shown to be promising as a new method for the study of the failure probability of birttle materials.

Probabilistic Estimation of Service Life of Box Culvert for Power Transmission Considering Carbonation and Crack Effect (탄산화와 균열을 고려한 전력구 콘크리트 구조물의 확률론적 수명 예측)

  • Woo, Sang-Kyun;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.30-40
    • /
    • 2014
  • The demand of underground structure such as box culvert for electric power transmission is increasing more and more, and the service life extension of these structures is very important. Recent observations in field and experimental evidences show that even steel in concrete can be corroded by carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of box culverts in our nation was evaluated by measuring the carbonation rate and concrete cover depth in field. Then, the service life due to carbonation at the cover depth was calculated by in situ information and the Monte Carlo simulation in a probabilistic way. Additionally, the accelerated carbonation test for the cracked beam specimen was executed and the crack effect owing to the carbonation process on the service life of box culvert was numerically investigated via Monte Carlo simulation based on the experimental results.

Effect of Inspection on Failure Probability of Pipes in Nuclear Power Plants (원전 배관의 파손확률에 대한 검사의 영향)

  • Park, Jai-Hak;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1249-1254
    • /
    • 2012
  • Pipe inspections conducted in nuclear power plants play an important role in ensuring the structural integrity of pipes. Because considerable manpower and expense is required for pipe inspections, it is very important to determine the optimum inspection period and the level of inspection. In this study, the effects of the period and the inspection quality on the failure probability of pipes are investigated using the P-PIE program, which has been developed to calculate the failure probability of pipes. The pipe data of an internal nuclear power plant is used in the study, and fatigue and stress corrosion crack growth are considered in the analysis.

The Sensitivity Evaluation of Probability Variables to Durability Design of the RC Structures (철근콘크리트 구조물 염해 내구설계에 있어서 설계확률변수의 민감도 평가)

  • Park, Dong-Cheon;Oh, Sang-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • Simulation method based on probability was developed to evaluate the durability of reinforced concrete structures about chloride attack. The effects of the probability parameters(surface chloride ion concentration, initial combined chloride ion concentration, the depth of cover thickness of concrete, and the chloride ion diffusion coefficient), probability distribution function and it's variation were calculated using the Monte Carlo method and Fick's 2nd law. From the durability design method proposed in this study, the following results were obtained. 1) The effects of the distance from the coast and the chloride ion diffusion coefficient to the corrosion probability were quite high. 2) The effect of the variation of each parameters was relatively low.