• Title/Summary/Keyword: 균열 탐사

Search Result 101, Processing Time 0.024 seconds

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

Induced Seismicity and Its Applications (유발지진 관측과 활용)

  • Kang, Tae-Seob;Rhie, Junkee;Choi, Nam-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Induced seismicity has been observed in the relation with lots of anthropogenic influence and at variety of geological conditions over the last several decades. This paper reviews those induced earthquakes and compares with each other as well as with natural tectonic earthquakes. Hydraulic fracturing is commonly used to enhance the permeability through new cracks in the rock formation. The process triggers the induced seismicity, which can give crucial information on the fracture network and oil/gas migration. In the similar way, unintentionally induced events during the production procedure of the field, dam reservoir, minig activity, or wastewater injection can be used to give insight into various hydrodynamic processes and changes of reservoir properties at a various scales. The general conclusion summarizes the uncertainty or limitations of knowledge up to date and presents some issues to be dealt with in the future research.

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam (필댐의 파이핑 재현시험시 전기비저항 변화 분석)

  • Ahn, Hee-Bok;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.59-68
    • /
    • 2010
  • Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Geotechnical Consideration on the Conservation of the Muryong Royal Tomb (무령왕릉의 보존을 위한 지반공학적 고찰)

  • Suh, Mancheol
    • Journal of Conservation Science
    • /
    • v.8 no.1 s.11
    • /
    • pp.40-50
    • /
    • 1999
  • A geotechnical research including observation of the movement of wall-structure, monitoring of groundwater, non-destructive geophysical investigation was conducted to workout a countermeasure to conserve the Muryong Royal Tomb which is the most extinguishable cultural property of the Baekje dynasty. Movement of the structure of Muryong Royal Tomb generally arises to the front chamber and its amplitude in a rainy season is twice of that in the dry season. It represents serious problem concerned about structural safety of the royal tomb in the rainy season. Movement of wall-structure is caused due to the rain infiltration through cracks in the quicklime layer within the soil mound on the top of the royal tomb and the change of the temperature inside of the tomb. Cracks found around the Muryong Royal Tomb are mostly spread in NW and SE of the tomb structure and it harmonizes with the direction of movement of wall-structure of the Muryong Royal Tomb. Counter-plans for safety and prevention of water-leakage that obstruct the movement of wall structures towards the direction of south are very important for the conservation of Muryong Royal Tomb. After getting rid of the cause of structural change by the restoration of the front chamber of the Muryong Royal Tomb, it needs to reinforce the quicklime layer for prevention of waterleak.

  • PDF

Probe of Unfilled Sheath of Prestressed-Concrete Girder Bridge Using Impact-Echo Method (충격탄성파법을 이용한 PC형교의 쉬이스 내부 그라우트 미충전부 탐사)

  • Lee, Sang Hun;Kim, Sang Jin;Endo, Takao;Sagara, Yuzo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.112-119
    • /
    • 2011
  • Sheaths are arranged in the web and lower part of prestressed-concrete girder bridges, and prestressing wires and concrete are indirectly bonded together by filling interior parts of the sheaths. However, when the filling is not sufficient, water can penetrate the interior parts of the sheaths and, thereby, prestressing wires can be corroded or transverse cracks would occur around sheaths by the freezing and thawing action of the penetrated water. Therefore, it is an important element in maintenance management of structures to find out the sheaths unfilled with grout early after construction. In this paper, in order not to damage bridge members, the impact-echo method with a new approach in application is used to probe sheaths unfilled with grout for real structures. The location of sheaths is first estimated with reinforcing bar probing instrument of radar type and the measurement locations of sheaths are determined. By sending elastic wave to the side of girders and receiving the response, the location of the unfilled part of a sheath was estimated from the difference between high frequency peak and twice the resonance frequency indicating thickness. To verify the location of void estimated by the impact-echo method, pictures were taken by an industrial fiber scope after drilling a hole.

A Case Study on the Cause Analysis of Land creep Using Geophysical Exploration (물리탐사를 활용한 땅밀림 원인분석의 사례적 연구)

  • Jae Hyeon Park;Gyeong Mi Tak;Kook Mook Leem
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.382-392
    • /
    • 2023
  • Recent reports have indicated a rapid increase in the frequency of sediment disasters due to climate change and other changes in the geological environment. Given this alarming situation and the recent increase in the frequency of land creep in Korea, systematic and efficient recovery and management of land creep areas is essential. The purpose of this study is to identify disaster vulnerability by conducting a physical exploration of land creep in San 4-1, Jayeon-ri, Gaegun-myeon, Yangpyeong-gun, Gyeonggi-do, and examine stability by identifying the overall geological structure of the affected ground. In addition, drilling surveys are conducted to verify the reliability of the measured data. The results of the study reveal that low specific resistance abnormalities are distributed in the upper part of the soil layer and weathering zone and that this section is a 50-120 m exploration line. It is also confirmed to be a low-hardness ground area where tensile cracks are observed. Therefore, there is a need for research focused on developing measures to reduce economic and social damage within the domestic context by continuously monitoring indicators of land creep and identifying land creep risks.

Crack Detection in Mortar Beams using Optical Time Domain Reflectometry (광학적 시간영역 반사시스템을 이용한 모르타르 보의 균열 탐사)

  • Rhim, Hong-Chul;Lee, Kyoung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.185-195
    • /
    • 2000
  • Detection of cracks in concrete beams using optical fiber sensors is useful for monitoring of concrete structures. In this study, optical time domain reflectometry (OTDR) is used to detect cracks. Resolution of OTDR is the main contributor to detect cracks in concrete structures. The OTDR used in this study can detect cracks with high precision of 0.5 m. Two mortar beams, reinforced with a 19 mm diameter steel bar, are made with the dimensions of 140 mm (width) ${\times}$ 200 mm (depth) ${\times}$ 2.000 mm (length). Two fibers are embedded inside each beam and two fibers are attached under the beams. The application of measurement system which consists of fiber and FC/PC connecter is studied. For this, theory of optics, resolution, crack moment, and size of specimens are investigated. From the measured data, it is verified that fibers which are attached under the beam can detect the crack in beams effectively. However, fibers embedded inside the beam are unable to detect cracks in beams using the OTDR in this study.

  • PDF

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF

Characteristics of Velocity and Electrical Resistivity in Gassy Sediments Results of Mudbelt Sediments in the Southeastern Inner Shelf of Korea (가스함유퇴적물에서의 음파전달속도 및 전기비저항 특성: 한국남동해역 이토대 퇴적물의 분석결과)

  • Kim, Dae-Choul;Park, Soo-Chul;Seo, Young-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.249-258
    • /
    • 2001
  • Compressional wave velocity and electrical resistivity of muddy sediments in the southeastern inner shelf of Korea were studied using nine piston core samples. The acoustic and physical properties were measured with 10 cm depth interval. Sediment structures were examined by x-radiographs of the cored sediments. Subbottom profiles were obtained by a high-resolution acoustic subbottom profiler. Acoustic turbid layers are clearly seen on the profiles, and x-radiographs of the sediments showed degassying structures formed by gas escaping. On the basis of x-radiographic images, velocities, electrical resistivities and physical properties, the sediments are divided into gassy and non-gassy sediments. The presence of gas and degassying structures result in a marked variation in velocity and electrical resistivity. It can be concluded that velocity and electrical resistivity arep arameter to recognize gassy sediment. The velocity is important parameter to indicate gassy sediment.

  • PDF