• 제목/요약/키워드: 균열 진전 속도

검색결과 113건 처리시간 0.021초

현가장치재 스프링강의 부식피로특성에 미치는 쇼트피닝 가공효과 (The Effect of Shot peening for Corrosion Fatigue Characteristics of Spring Steel Using as Suspension Material)

  • 박경동;이주영;기우태;신영진
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.62-70
    • /
    • 2007
  • The development of new materials that are light-weight, yet high in strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. The fatigue crack growth rate of the Shot-peened material was lower than that of the Un-peened material. And in stage I, threshold stress intensity factor of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. And Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

금속기복합재료의 피로균열성장거동에 대한 응력비 영향에 관한 연구 (A Study on the Stress Ratio effect of Metal Matrix Composites on Fatigue Crack Growth Behavior)

  • 최용범;허선철;윤한기;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties. It was also highlighted as the materials of frontier industry because strength, heat-resistant, corrosion-resistant, wear-resistant were superiored. In this study the strength properties of $Al_{18}B_4O_{33}/AC4CH$ were represented mixing the binder of $Al_2O_3$ and $TiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_4O_{33}/AC4CH$ was fabricated at the melt temperature of $760^{\circ}C$ the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa and observed SEM. Fatigue crack growth rate tests on compact tension specimen(half-size) of thickness 12.5mm were conducted by using sinusoidal waveform. Compact tension specimens(half-size) were used and fatigue crack growth rate da/dN and stress intensity factor range ${\Delta}K$ were analyzed concerning to the R value of 0.1 and 0.05. In order to find out the value of ${\Delta}K$, load amplitude constant method was applied by the standard fatigue testing method describes in ASTM E647-95a. As the results of this study, Fatigue crack growth rate increased with in creasing the load ratio, Consequently, At equivalent stress intensity factors, the fatigue crack growth rates in MMC were faster than those of AC4CH alloy. then the fatigue life and the fatigue crack growth rate was investigated using scanning election microscopy(SEM)

  • PDF

점탄성을 고려한 고체추진제의 파괴인성 평가 (Fracture Toughness Evaluation of a Solid Propellant Considering Viscoelasticity)

  • 하재석;김재훈;정규동;박재범;양호영;서보휘
    • 한국추진공학회지
    • /
    • 제17권2호
    • /
    • pp.57-62
    • /
    • 2013
  • 고체추진제 내부의 균열은 연소면적을 증가시키기 때문에 과연소를 발생시키며 로켓의 기능을 상실하거나 파손되는 문제로 이어질 수 있다. 따라서 고체추진제의 설계에서 균열진전에 대한 저항력인 파괴인성의 평가가 요구된다. 하지만 고체추진제의 특성상 복잡하고 심한 비선형 거동을 나타내기 때문에 파괴인성을 측정하는 데에는 많은 어려움이 있다. 본 연구에서는 고체추진제를 선형점탄성 재료로 가정하여 파괴인성을 평가하였다. CCT(Center-cracked Tension) 시험편을 이용한 파괴인성시험을 수행하였으며 점탄성재료에서 나타나는 응력완화현상을 이용한 가상탄성변위를 계산하여 ASTM E399 규격을 통해 파괴인성을 평가하였다. 또한 파괴인성에 대한 시험온도, 시험 속도의 영향에 대한 결과를 고찰하였다.

초음파 속도 분석을 통한 불국사 다보탑 구조 안전 진단 (The structural safety diagnosis of Dabo Pagoda of Bulkuk Temple using analyses of ultrasonic wave velocity)

  • 서만철;송인선;최희수
    • 지구물리
    • /
    • 제5권3호
    • /
    • pp.199-209
    • /
    • 2002
  • 경상북도 경주시에 위치한 불국사 다보탑의 구조 안전 진단을 목적으로 탑의 각 부재에 대한 비파괴 정밀 조사가 실시되었다. 암석 부재의 역학적 성질을 추정하기 위해 255개 부재에서 641 지점에서 초음파 속도를 측정하였으며, 그 결과는 P-파 속도 범위가 $584{\sim}5169m/sec$이며 평균 속도는 2876m/sec이다. 일축압축강도는 $93{\sim}1314kg/cm^2$ 범위로 평균치가 $396kg/cm^2$이고, 풍화도지수는 $0.07{\sim}0.88$의 범위로 평균 0.43으로 중간정도의 풍화를 받은 것으로 나타났다. 각 암석부재의 파괴강도와 이에 작용하는 응력을 비교한 결과, 탑의 구조에 관계된 부재들의 상태는 비교적 양호한 상태를 보여주지만, 편하중에 의한 부분 파괴의 가능성이 남아있다. 편하중에 의한 균열이 계속 진행중인지 모니터링이 필요하며, 편하중을 제거하기 위한 대책이 중요하다. 1층 및 2층 옥신부 주변의 난간은 비교적 작은 부재들로 이루어져 있어 풍화가 많이 진전되었지만 구조적 불안정에는 직접 관련이 없다.

  • PDF

스프링강의 피로크랙진전 특성에 미치는 쇼트피닝 투사속도의 영향 (An Effect of Shot Velocity of Shot-peening on A Property of Growth Behavior of Fatigue Crack for Spring Steel)

  • 박경동;노영석
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.341-346
    • /
    • 2002
  • In this study, an effect that compressive residual stress formed by shot-peening the surface of spring steel(JISG SUP-9) at each shot velocity(1800, 2200, 2600, 3000rpm) on the fatigue crack growth property and threshold stress intensity factor, ${\Delta}K_{th}$, was examined. Followings are the result (1) Compressive residual stress on surface of specimen was determined at each -601 MPa(1800rpm), -638 MPa(2200rpm), -587 MPa (2600rpm), -550 MPa(3000rpm) by shot velocity of shot peening and threshold stress intensity factor, ${\Delta}K_{th}$, fatigue crack growth rate, da/dN, on fatigue crack growth is obstructed by the compressive residual stress was determined at each $5.619\;MPa\sqrt{m}$(Un-peening), $8.319\;MPa\sqrt{m}$(1800rpm), $8.797\;MPa\sqrt{m}$(2200rpm), $7.835\;MPa\sqrt{m}$(2600rpm), $7.352\;MPa\sqrt{m}$(3000rpm) (2) Existing compressive residual stress by effect of shot velocity of shot-peening on relation of crack length. a, and number of cycle, N, was 2 times progressed in case of 2200rpm than specimen of Un-peening on fatigue life. And fatigue life was 1.6 times progressed incase of 3000rpm by Over peening. (3) Fatigue life of Material on Paris' law, $da/dN=C({\Delta}K)^m$, that effect of material constant, C, and fatigue crack growth exponent, m, was influenced by effect of. C and m.

  • PDF

독립형 LNG 화물창의 공학적 결함 평가 (Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank)

  • 서재훈;박규식;차인환;정준모
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

적층공법을 적용한 시멘트계 복합재료의 수축특성 (Shrinkage Characteristic of Cementitious Composite Materials for Additive Manufacturing)

  • 이호재;김기훈;유병현;김원우;문재흠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.99-104
    • /
    • 2019
  • 본 연구의 목적은 시멘트계 복합재료의 적층을 위해 증점제를 적용하여 개발한 출력배합의 수축 특성을 평가하고, 프린팅 기법을 이용해 제작한 적층시험체와의 수축 특성을 비교하는 데 있다. 증점제 적용 시 수축이 기준배합과 비교하여 평균 25% 저감(56일 기준)되는 것을 확인하였다. 수축이 저감되는 긍정적인 효과에 반해 압축강도는 약 15% 감소(28일 기준)되는 부정적인 효과도 확인되었다. 출력배합을 이용해 제작한 적층시험체와 몰드시험체를 이용하여 수축을 평가한 결과, 적층시험체의 수축변형률이 약 25% 감소(28일 기준)되는 것을 확인하였다. 본 연구결과를 통해 3D 프린팅을 이용한 시멘트계 복합재료의 출력 시 수축의 진전속도와 수축으로 인한 균열의 발생시점을 예측할 수 있을 것으로 판단된다.

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF

자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향 (The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material)

  • 기우태;박성모;문광석;박경동
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.