• Title/Summary/Keyword: 균열 저감

Search Result 246, Processing Time 0.023 seconds

Hydration Heat and Crack-Reducing Properties of Cement Mortar Added Fluosilicate Salt Based Hydration Heat Reducer (규불화염계 수화열 저감제가 첨가된 시멘트 모르타르의 수화열 변화 및 균열저감 특성)

  • Kim, Jin-Yong;Lee, Hyo-Song;Rhee, Young-Woo;Kim, Do-Su;Lee, Byoung-Ky;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.198-204
    • /
    • 2005
  • Fluosilicate salts based hydration heat reducer(SWP-HR), used in this study, is composed of fluosilicate salts, soluble silica, aromatic polymer condensate and nitrate salt based inorganic compound with latent heat property. Effects of SWP-HR addition on the hydration heat and anti-crack property of cement mortar were investigated. Adiabatic hydration temperature and drying shrinkage length of SWP-HR added cement mortar had a tendency to decrease compared to those of cement mortar without SWP-HR addition. Also, it was confirmed through crack pattern experiment of plate-form specimen for elucidating crack-reducing characteristic that anti-crack property of SWP-HR added cement mortar was improved.

Plastic and Drying Shrinkage Cracking Reduction by the Bubble Sheet Curing (버블시트 피복양생법에 의한 소성 및 건조수축 균열저감)

  • Lee, Joung-Gyo;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2016
  • In this research, the performance of surface covering technique using a white-colored bubble sheet on reducing the cracking due to the plastic, and drying shrinkages for high rise building construction were evaluated by comparing the exposed surface without any surface treatment. From the results of the experiment conducted during fall season, desired results of decreased numbers, length, maximum width, and area of cracking were obtained without a significant difference on heat of hydration and cumulative temperature. Therefore, it is considered that the surface covering technique using bubble sheet is an appropriate method for preventing plastic and drying shrinkage cracking at fall season concrete construction.

Crack Susceptibility Reduction and Weld Strength Improvement for Al Alloy 5J32-T4 by using Laser Weaving Method (레이저 위빙을 적용한 알루미늄 합금 5J32-T4의 용접균열 저감 및 용접강도 향상에 관한 연구)

  • Choi, Kwang-Deok;Ahn, Young-Nam;Kim, Cheol-Hee
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • 레이저 용접은 아크 용접에 비해 상대적으로 빠른 용접과 깊은 용입이 가능하며, 낮은 열입력을 가지는 장점이 있다. 하지만 알루미늄 합금 용접 시 균열 감수성의 증가 및 용접강도가 저하되는 단점을 가지고 있다. 이러한 단점을 극복하는 방법으로 모재의 화학조성을 제어하는 방법과 부가적인 용접와이어를 공급하는 방법이 제안되었으나 레이저 용접에 적용하기 쉽지 않다. 아크 용접과 전자빔 용접에서는 열원에 오실레이션을 적용하여 결정립 구조를 제어하여 용접강도를 증가하는 방법이 제안되었다. 따라서 본 연구에서는 알루미늄 합금 5J32-T4의 용접균열 저감 및 용접강도 향상을 위해 레이저 위빙을 적용하였다. 1mm 두께의 알루미늄 5J32-T4를 사용하였으며, 4kW급 디스크 레이저와 레이저용 스케너를 이용하여 레이저 위빙을 구현하였다. 고온균열을 평가하기 위해 자기구속형 균열 평가방법을 사용하였으며, 용접강도를 평가하기 위해 겹치기 용접을 수행한 시편을 이용하였다. 고온균열 실험결과 레이저 위빙 적용 시 직선 용접에 비해 균열 감수성이 감소한 것을 확인하였다. 전단인장강도 측정결과 레이저 위빙의 적용에 따라 직선 용접에 비해 높은 전단인장강도의 확보가 가능하였다.

  • PDF

Shrinkage Reduction Performance of HPFRCC Using Expansive and Srhinkage Reducing Admixtures (팽창재와 수축저감제를 사용한 HPFRCC의 수축 저감 성능)

  • Park, Jung-Jun;Moon, Jae-Heum;Park, Jun-Hyoung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.34-40
    • /
    • 2014
  • High-performance fiber-reinforced cement composite (HPFRCC) shows very high autogenous shrinkage, because it contains a low water-to-binder ratio (W/B) of 0.2 and high fineness admixture without coarse aggregate. Thus, it needs a method to decrease the cracking potential. Accordingly, in this study, to effectively reduce the shrinkage of HPFRCC, a total of five different ratios of SRA (1% and 2%), EA (5% and 7.5%), and a combination of SRA and EA (1% and 7.5%) were considered. According to the test results of ring-test, a combination of SRA and EA (1% and 7.5%) showed best performance regarding restrained shrinkage behavior without significant deterioration of compressive and tensile strengths. This was also verified by performing modified drying shrinkage crack test.

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.

An Experimental Study on the Properties of Engineering and Shrinkage Cracking Reduction of Fiber Reinforced Concrete Using Recycled Fine Aggregate (섬유보강 순환잔골재 콘크리트의 공학적 특성 및 수축균열저감특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Moo-Han;Lee, Do-Heun;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • Recently, the study is progressing actively about manufacture skill of concrete for promoted recycled aggregate and concrete made into recycled aggregate in the construction production field. But, application and study about recycled fine aggregate insufficient compared to recycled coarse aggregate. So, in this study, it presents basic data for development of environmental load reduction fiber reinforcement recycled fine aggregate concrete by comparison and investigation about engineering properties and shrinkage cracking of fiber reinforcement recycled find aggregate concrete for increasing shrinkage cracking reduction and long term stability of environmental load reduction concrete used recycled fine aggregate. In the result of the study, compared to natural fine aggregate, a crack-extent increased by applying recycled fine aggregate, moreover, as a water cement ratio increased, the crack size increased, as well. In addition, it's shown that the specimen mixed with PVA and Nylon, among all kinds of fibers, showed the smallest crack size, so it's verified that the mix of fiber had an effect on decreasing crack-extent.

  • PDF

Drying Shrinkage Characteristics of the Concrete Incorporated Shrinkage Reducing Agent According to Mixed Proportion of Concrete (콘크리트 배합조건에 따른 수축저감제의 건조수축 특성)

  • Kim, Young-Sun;Kim, Kwang-Ki;Park, Soon-Jeon;Kim, Jung-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.245-252
    • /
    • 2017
  • Recently, structures such as large retailers, outlets and warehouses have been increasing in accordance with changes in consumption patterns. Since these structures include ultra-flat slab members, they are thoroughly managed to control slab cracking by the plastic and drying shrinkage. In order to control the cracking of the slab member, a chemical crack reduction method is used. In particular, the use of the shrinkage reducing agent has been examined. However, domestic research results are limited. In this study, the shrinkage properties of concrete using shrinkage reducing agent and the drying shrinkage properties according to the mixing factors were investigated. The performance of domestic shrinkage reducing agent was appeared similar to that of overseas high-grade shrinkage reducing agent. As the shrinkage reducing agent usage increased, the drying shrinkage reduction effect increased. At the age of 100 days, the dry shrinkage rate of specimen with the shrinkage reducing agent of 1.5%was shown about half that of the specimen without the shrinkage reducing agent. The shrinkage reducing agent was gound to have no specific performance change for the use of the admixture.

Hydration Heat Control of Marine Pier Foundation using Low-Heat Cement and Mesh Form (저발열 콘크리트와 Mesh형 거푸집을 이용한 교각기초의 수화열 저감 방안 연구)

  • Cho, Yong-Yeon;Lee, Won-Joon;Won, Jong-Hwa;Kim, Tae-Min;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.315-318
    • /
    • 2009
  • 본 논문에서는 해상 기초 교각 매스 콘크리트의 수화열 저감 방안을 다루었다. 저발열 콘크리트, Mesh형 거푸집 공법 등에 대한 실험을 수행하여 각각의 수화열 저감효과를 평가하였다. 현장 실험은 사용 시멘트와 거푸집의 종류, 거푸집의 사용 면수에 따라 총 4 type으로 구성하였으며, 이에 대한 실험 결과와 유한 요소 해석 결과를 비교, 검증하여 최종적인 수화열 저감 성능을 도출하고자 하였다. 실험을 통해, 저발열 시멘트와 유로폼을 사용하는 것이 수화열 저감을 위해 효과적인 방법으로 판명되었으나 추가 공사비의 발생으로 효율성이 떨어질 것으로 판단된다. 또한 Mesh형 거푸집 적용 면 수와 온도 상승 저감 효과는 비례하는 것을 알 수 있었지만 내 외부 온도차가 다소 크게 나타나 수화열에 의한 균열 발생 확률면에서는 다소 불리하게 나타났다. 그러나 실험 단계에서 생략된 양생과 관리를 통하여 균열의 저감효과를 거둘 수 있을 것으로 판단되며, 추가적으로 거푸집 해체 단계를 생략함으로 공기단축 측면에서 유리할 것으로 판단된다.

  • PDF

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.