콘크리트 슬래브 표면의 영상처리 목적은 구조물의 균열발생을 최소화하고 발생한 균열에 대해서 지속적인 기록 관리로 균열의 진행 상태를 분석하여 보수시기 및 보수공법 적용의 합리적 운영체계를 수립하고자 하는 것이다. 일반적으로 콘크리트에서의 균열은 육안으로 분간할 수 있을 정도로 큰 반면 프리스트레스트 콘크리트의 균열은 기기를 사용하여야 측정, 분별할 수 있다. 본 논문에서는 균열의 명함도와 인접한 표면의 명함도 차이를 이용하여 균열과 잡음을 분리한다. 그리고 균열과 잡음 영역에서 형태학적인 정보를 이용하여 잡음 영역만을 제거한다. 잡음 영역이 제거된 균열 영역에서도 미세한 잡음이 존재하므로 균열 영역을 평활화를 한 후, 미세 잡음을 하나의 객체로 인식하여 제거하고 끊어진 영역의 균열을 미디언 필터를 이용하여 균열을 연결한다. 그리고 제안된 방법으로 추출된 균열을 원본 영상에 적용하여 최종적으로 균열만을 검출한다. 검출된 균열에서 균열의 특정부분을 선택하고 선택되어진 균열 영상을 대상으로 균열의 길이, 방향, 폭을 순차적으로 분석한다. 실제 균열 영상을 대상으로 실험한 결과, 균열이 비교적 정확히 검출되었고 균열 검사기가 한번에 측정할 때에 비해 비교적 빠르고 적은 노력으로 측정할 수 있는 것을 확인하였다.
본 논문에서는 콘크리트 표면 품질이 좋은 영상뿐만 아니라, 기존의 영상처리 기법에서 다루지 않았던 표면 품질이 좋지 않은 영상에 대해서도 효율적으로 균열을 추출하고, 추출된 균열의 특징인 길이, 방향, 폭을 자동으로 계산한 후, ART2 기반 RBF 네트워크를 적용하여 균열의 방향성($-45^{\circ}$방향, $45^{\circ}$방향, 횡방향, 종방향)을 인식하는 기법을 제안한다. 본 논문에서 제안한 콘크리트 균열 추출 및 분석 알고리즘은 Roberts 연산자를 이용하여 균열을 강조하고, 강조된 균열을 Multiple 연산을 이용하여 균열과 배경간의 밝기 차이를 크게 한 후, 개선된 적응 이진화 기법을 이용하여 균열의 후보 영역을 추출한다. 추출된 균열 후보 영역을 형상 분석과 위치 및 방향 분석을 이용하여 3차례에 걸쳐 잡음을 제거하고, 잡음 제거 과정에서 잡음으로 분류된 균열을 복원하여 균열의 특징을 분석한다. 그리고 ART2 기반 RBF 네트워크를 균열의 방향성($-45^{\circ}$방향, $45^{\circ}$방향, 횡방향, 종방향)에 적용하여 인식한다. 제안된 ART2 기반 RBF 네트워크는 입력층과 중간층으로의 학습은 ART2을 적용하고 중간층과 출력층간의 학습은 Delta 학습 방법을 적용한다. 실제 콘크리트 표면 균열 영상을 대상으로 실험한 결과, 제안한 방법이 기존의 방법보다 균열의 검출 성능이 개선되었고 잡음으로 분류된 균열도 효율적으로 복원되었다. 또한 제안된 ART2 기반 RBF 네트워크가 균열의 방향성 인식에 효율적임을 확인할 수 있었다.
본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.
통상적으로 콘크리트 지하 구조물은 수십 년 이상 사용할 수 있도록 설계되지만 최근 들어 구조물 중 상당수가 당초의 기대 수명에 근접하고 있는 실정이다. 그 결과 구조물 고유의 기능이 상실되고 다양한 문제가 야기될 수 있어 신속한점검과 보수가 요구되고 있다. 이를 위해 지금까지는 지하 구조물 유지관리를 위하여 인력 기반의 점검과 보수가 진행되었으나 최근에는 인공지능과 영상 기술의 융합을 통한 객관적인 점검 기술 개발이 활발하게 이루어지고 있다. 특히 딥러닝을 활용한 영상 인식 기술을 적용하여 지도학습 기반의 콘크리트 균열 탐지 알고리즘 개발에 관한 연구가 다양하게 진행되고 있다. 이러한 연구들은 대부분 지도학습 형태 영상 인식 기술로 많은 양의 데이터를 바탕으로 개발이 되는데, 그 중에도 많은 수의 라벨 영상(Label image)이 요구된다. 이를 확보하기 위해서는 현실적으로 많은 시간과 노동력이 필요한 실정이다. 본 논문에서는 이와 같은 문제를 개선하고자 적대적 학습 기법을 적용하여 균열 영역 탐지 정확도를 평균적으로 0.25% 향상시키는 방법을 기술하고자 한다. 이 적대적 학습은 분할(Segmentation) 신경망과 판별자(Discriminator) 신경망으로 구성되어 있고, 가상의 라벨 영상을 경쟁적인 구조로 생성하여 인식 성능을 높이는 알고리즘이다. 본 논문에서는 이 같은 방법을 활용하여 효율적인 심층 신경망 학습 방법을 제시하였고, 향후에 정확한 균열 탐지에 활용될 것으로 기대한다.
연구목적: 철도 안전에 영향을 미치는 콘크리트 궤도는 이미지분석 기술을 사용하여 균열을 감지 할 수 있으나 균열을 검출하기 위한 콘크리트 궤도 및 표면 오염의 조건이 균열검측에 방해되므로 이를 효과적으로 제거하기 위한 방법이 필요하다. 연구방법: 본 연구에서는 한국 철도의 균열을 효과적으로 감지하기 위한 이미지 분석 기법을 적용한 프로세스를 제안하고 실험 모듈을 통해 취득된 이미지를 분석하여 성능을 검증하였다. 또한, 우리는 제안된 Gabor Filter Bank 기법을 사용하여 철도 콘크리트 도상 이미지를 획득한 데이터 중 무작위로 선택된 2000개의 이미지를 개발된 프로세스를 통해 자동 균열 검측을 수행하여 타당성을 검토하였다. 연구결과: 연구에서 제안된 시스템으로 균열 검측 결과 탐지율이 약 94% 성능으로 검토되었으며 취득된 철도콘크리트도상이미지의 균열이 동일한 크기와 형식으로 일치하였다. 결론: Gabor Filter Bank를 사용한 균열 검측법은 한국 철도의 콘크리트 궤도도상에 노이즈를 포함한 균열 이미지에 효과적으로 분석되는 것을 확인 할 수 있었다. 이 시스템은 기존의 인간 위주의 철도 산업에서 자동화 된 유지 관리 시스템이 될 수 있을 것으로 기대된다.
This study proposes the neural network simulator for the integrity evaluation of weld zone in railway rails. For these purposes, the ultrasonic signals for defects(crack) of weld zone in frames are acquired in the type of time series data and echo strength. The detection of the natural defects in railway truck is performed using the characteristics of echodynamic pattern in ultrasonic signal. And then their applications evaluated feature extraction based on the time-frequency-attractor domain(peak to peak, rise time, rise slope, fall time, fall slope, pulse duration, power spectrum, and bandwidth) and attractor characteristics (fractal dimension and attractor quadrant) etc. The constructed neural network simulator agrees fairly well with the measured results of test block(defect location, beam propagation distance, echo strength, etc). The Proposed neural network simulator in this study can be used for the integrity evaluation of weld zone in railway rails.
본 연구의 목적은 영상 처리 기법의 히스토그램 분석을 이용하여 콘크리트 구조물 표면의 최대 균열 폭을 평가하는 것이다. 이를 위하여 콘크리트 표면 균열에 대한 영상을 촬영하고, 촬영된 영상을 회색 영상 및 이진화 영상으로 변환하였다. 이진화된 영상은 팽창과 침식이 적용된 후 레이블링을 통하여 분리된 객체로 인식된다. 콘크리트 표면은 시간이 경과함에 따라 먼지와 얼룩 등이 발생될 수 있으며, 촬영 조건에 따라 그림자 및 조명 반사가 포함될 수 있다. 또한, 콘크리트 균열은 연속적인 형상으로 발생되는 반면에 잡음은 점의 형태로 나타난다. 이러한 영향을 제거하기 위하여 이진화 과정은 양방향 블러와 적응적 경계를 적용하였으며, 레이블링된 영역에 대하여 면적비를 통한 잡음 제거를 수행하였다. 잡음이 제거된 각각의 균열 객체는 히스토그램 분석을 통하여 x축과 y축에 대한 최대값 및 그 위치가 연산되고, 분리된 객체에 대한 각각의 최대값 위치에서 삼각비를 통하여 균열 폭을 평가하게 된다. 제안된 방법에 의해 평가된 최대 균열 폭은 균열 게이지에 의해 계측된 값과 비교 분석되었다. 본 연구에 의해서 제안된 방법은 콘크리트 표면 영상에 대한 균열 폭 평가에 신뢰성을 향상 시킬 수 있을 것이다.
중트럭통행으로 인한 철근콘크리트 교량바닥판의 열화는 교량구조물을 유지보수하는데 있어서 심각한 문제중 하나이며, 프리캐스트 바닥판을 이용한 교량바닥판의 시공 및 교체 방법이 실용적이며, 효과적인 방법으로 인식되고 있다. 본 연구에서는 프리캐스트 바닥판 사이 연결부에 대한 정적실험을 수행하여 실험부재의 탄성영역 및 극한 상태하에서 프리캐스트 바닥판 사이 교축직각 방향 연결부의 강성 및 강도를 평가하였다. 정적실험결과, 무수측 모르나트를 채움재로 사용한 프리캐스트 바닥판 사이 교축방향 연결부는 교축방향으로 적정량의 프리스트레스를 도입함으로서 일반 현장타설 철근콘크리트 바닥판에 비해서 균열에 대한 사용성이 향상되는 것으로 나타났다.
사회의 특정 영역에서 발생하는 범죄행위에 대해 그 영역의 특수성으로 인하여 동일한 일반 범죄행위보다 더 중한 비난을 가해야 한다는 것이 일반적인 사회인식일 것이다. 특히 환자의 신체와 생명을 위한다는 목적을 고려해볼 때, 의료인과 환자 사이의 신뢰관계가 의료영역의 기본적 구조로 요구되는 점을 고려해볼 때, 환자에 대한 의료인의 성범죄 행위는 일반인의 그것과 동일선상에 위치시킬 수는 없다. 하지만 이를 형사법적 제재를 통해 해결하려는 입법적 태도는 결코 바람직 하지 않다. 형벌을 전제하는 형법의 기본 원칙은 보충성의 원칙이다. 가능한 모든 수단을 통해 해결하려고 노력한 후 가장 마지막으로 형벌을 가지고 개입하라는 의미이다. 의료라는 특별영역에서 존재하는 특수성에 대한 고려 없이 일률적으로, 편의적으로 성급히 개입하려는 입법적 태도는 해당 영역에서 심각한 균열을 일으킬 것이다. 또한 법체계적 정형성을 무너뜨려 법적용 실무상에서도 바람직한 결과를 기대할 수 없을 것이다. 오히려 행정적 규제가 형벌적 제재보다 효율적이다. 하지만 가장 최선의 방법은 의료영역 해당 구성원들에 의한 자율적 통제이다. 형벌은 가장 마지막에 개입해야하고, 행정적 제재는 그 다변화를 통해 구체적 상황에 효율적으로 개입할 수 있어야 한다. 결론적으로 이러한 국가의 개입은 의료영역이 자율적 통제로 나아갈 수 있도록 가장 멀리 서 있어야 할 것이다.
닫힌 균열을 따라 발생하는 전단거동을 Mode II 크랙의 시작과 진행으로 묘사할 수 있다. 파괴역학 이론에서는 순수 Mode II 재하에서 일반적으로 고유물성으로 인식되는 에너지 방출율(GII, Engergy Release Rate)이 한계점($G_{IIC}$)에 도달했을 때 전단거동이 시작된다고 예측한다. 지난 몇 년간 퍼듀대학의 암반공학그룹은 한계 에너지 방출률($G_{IIC}$)의 구속응력(normal stress)과 닫힌 균열의 거칠기에 대한 관계를 실험적으로 접근해왔다. 먼저 많은 실험들이 아크릴 재료를 대상으로 실행되었는데, 이는 광탄성(Photoelastic) 방법을 이용한 균열 끝(fracture tip)의 응력 집중 영역을 시각화하는 것을 가능케 해 주었다. 그 다음 실험 연구는 비교적 낮은 압축강도를 지닌 균질한 석고에 시행되었고, 최근에는 더 높은 압축강도를 지닌 재료를 대상으로 실험연구를 수행하였다. 그 예로 시멘트로 만든 시료 불록에 직접 전단 실험을 하였는데, 이전의 실험들과 마찬가지로 불연속면의 최대마찰각(Peak Friction Angle)이 잔류 마찰각(Residual Friction angle)과 비슷할 때만이 $G_{IIC}$가 재료의 고유물성으로 간주 될 수 있다는 점을 확인할 수 있었다. 그렇지 않은 경우에 한계 에너지 방출율($G_{IIC}$)은 구속응력과 함께 증가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.