• Title/Summary/Keyword: 균열 열림하중

Search Result 25, Processing Time 0.031 seconds

A Modification of the $C^*$ Integral Considering the Effect of Crack Growth (균열 진전의 효과를 고려한 $C^*$ 적분의 수정)

  • 최영환;방종명;염윤용;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 1989
  • A modified $C^{*}$ integral as load parameter in creep fracture is proposed considering the effect of crack growth. It is shown that the parameter does not depend on crack velocity. By performing experiment using STS 304 stainless steel at 600.deg.C the validity of the parameter is investigated. The results show that the parameter is a good measure as a load parameter in creep fracture and the rate of crack tip opening displacement can also be a creep load parameter for STS 304 at 600.deg. C.C.

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Automatic Determination of Crack Opening Loading under Random Loading by the Use of Neural Network (신경회로망을 이용한 변동하중 하에서의 균열열림점 자동측정)

  • Gang, Jae-Yun;Song, Ji-Ho;Kim, Jeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2283-2291
    • /
    • 2000
  • The neural network method is applied to automatically measure the crack opening load under random loading. The crack opening results obtained are compared with the visual measured results. Fatigue crack growth under random loading is predicted using the crack opening data measured by the neural network method, and the prediction results are compared with experimental ones. It is found that the neural network method can be successfully applied to consistently measure the crack opening load under random loading and also gives some results different from the results by visual measurement.

Mixed-mode fracture toughness measurement of a composite/metal interface (복합재료/금속 접착 계면의 혼합모드 파괴인성 측정)

  • Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.

An Analysis for The Ductile Crack Growth (연성 균열성장의 해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 1990
  • This paper presents a methodology for predicting stable crack growth and instability of a cracked body under monotonically increasing load. It is based on a model that incremental crack extensions and load increments after fracture initiation occur by turns in sequence and the criterion that the crack grows by an incremebt .delta.a when the opening displacement at the current crack tip increases by a critical value V$_{c}$. It is shown that the value I$_{c}$ = V$_{c}$/ .delta. a is a material constant characterizing ductile crack growth resistance. Along with the fracture initiation toughness value, the constant is used for the calculation of the loads against crack extensions by adding up each increment. The specimen failure is defined to occur when the necessary load increment for crack extension is zero or when the limit load in the current ligament is reached. The predicted failure loads are in good agreement with the avaliable experimental failure loads for the compact and center-cracked tension specimens of 7075-T651, 2024-T351 aluminum alloys and 304 stainless steel.steel.

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Crack Growth Instability for Ductile Material Using the Compact Tension Specimen (컴팩트 인장 시편을 이용한 연성 재료의 불안정 균열 성장에 관한 연구)

  • 이홍서;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.928-937
    • /
    • 1989
  • Applicability of $T_{\delta}$ proposed by Shin et al as an instability parameter for ductile material is investigated, Both general fracture test and instability fracture test are performed using compact tension specimens of structural alloy steel(SCM4), The values of ( $T_{\delta}$)$_{app}$(applied tearing modules) estimated from the real load vs. crack growth curve measured from experiments are compared with those estimated from the limit load vs. crack growth curve. The results are:(1) the $T_{\delta}$ parameter may be used as a crack instability parameter:(2) the use of ( $T_{\delta}$)$_{app}$ estimated from the load-crack growth curve, proposed in this study is reasonably justified.ified.d.

Evaluation of Fracture Toughness of Copper Thin Films by Combining Numerical Analyses and Experimental Tests (해석과 실험을 결합한 구리 박막의 파괴인성 평가)

  • Kim, Hyun-Gyu;Oh, Se-Young;Kim, Kwang-Soo;Lee, Haeng-Soo;Kim, Seong-Woong;Kim, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • In this paper, a method of combining numerical analyses and experimental tests is used to evaluate fracture toughness of copper thin films of $15{\mu}m$ thickness. Far-field loadings of a global-local finite element model are inversely estimated by matching crack opening profiles in experiments with numerical results. The fracture toughness is then evaluated using the J-integral for cracks in thin films under far-field loadings. In experiments, Cu thin films attached to Aluminum sheets are loaded indirectly, and crack opening profiles are observed by microscope camera. Stress versus strain curves of Cu thin films are obtained through micro-tensile tests, and the grain size of Cu thin films is observed by TEM analysis. The results show that the fracture toughness of Cu thin films with $500nm{\sim}1{\mu}m$ sized grains is $6,962J/m^2$.

A Study on the Fatigue Behavior of Spot Weld Specimen as Applied Load Pattern (하중작용방식에 따른 점용접재의 피로거동)

  • 송삼홍;양윤진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.485-488
    • /
    • 2000
  • In this study, the fatigue characteristic of spot weld specimen was studied by using the various specimen. The specimen types were tensile shear specimen welded one spot and two spot, and cross tension. The tensile tests and fatigue tests were executed to know the mechanical properties under static and fatigue load condition. In addition, the relationship was illustrated by finite element method.

  • PDF

The Behavior of Fatigue Crack Propagation by Position of Indentations (압흔가공위치에 따른 피로균열 전파거동)

  • 송삼홍;최진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.28-32
    • /
    • 1995
  • This effective way for repairing a fatigue crack is making indetations around fatigue crack tip. In this paper, we performed fatigue test to investigate the optimal position of the indentations, and observed crack opening behavior at the same time. The indentation positions of specimens were on the crack tip, front and back of the crack tip. The results of the experiment showed taht it was veryeffective way to increase fatigue life that making indentations on the crack tip, and it was the optimal position that making indentations on the crack tip.

  • PDF