• Title/Summary/Keyword: 균열 분석

Search Result 1,643, Processing Time 0.03 seconds

지하철 정거장 균열발생 원인 분석

  • 김학수
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.141-145
    • /
    • 1998
  • 현재 서울을 비롯한 5대 광역시에 지하철이 계획, 시공되고 있다. 이와 같은 지하철은 많은 사람들이 이용하는 대중교통 수단이므로 설계 시 작용하는 하중조건을 모두 고려하여 설계를 하고 있지만 Box형으로 시공된 지하철 구조물의 본선 및 정거장에 대해 점검한 보고서를 참고하면 본선보다는 정거장에서 많은 균열이 발생되고 있다. 따라서 본 논문에서는 Box형으로 시공된 정거장 구조물에 대하여 균열이 발생된 형태와 원인을 연구하여 추후 시공하고자 하는 정거장구조물에 대해 균열발생 억제방안을 도출하고자 한다. (중략)

  • PDF

Evaluation of Crack Self-healing Performance in Centrifugal Molding Concrete by Permeability Test (원심성형 콘크리트의 투수시험을 통한 균열 자기치유 성능평가)

  • Hwang, Chul Sung;Woo, Hae Sik;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2018
  • Recently, study on self-healing materials have been performed to increase the life by repairing the damage of structures themselves, which are difficult to repair or require high maintenance costs. A water permeability test has been widely used for the evaluation of self-healing performance. However, in the self-healing performance test method, the initial crack width of the concrete greatly affects on the self-healing performance but it does not have a consistent standard. Therefore, in this study, the correlation between crack and permeability and that between time and permeability were analyzed based on crack width and permeability. In addition, since the initial crack width measured by optical microscope is not reliable, the value is derived from the Poiseuille flow and the tendency of time-permeability and time-crack width are analyzed.

L-System Based Procedural Synthesis Method to Efficiently Generate Dense, Radial, and Concentric Cracks of Glass (유리의 미세, 방사상, 동심원 균열을 효율적으로 생성하기 위한 L-System 기반의 절차적 합성 방법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • We propose a complex crack generation technique which is represented when impact is applied to glass. The crack patterns expressed when external forces are applied to the glass are classified into dense, radial, and concentric cracks, and we use procedural methods to efficiently represent crack patterns. Based on the input external force, we synthesize the crack example and apply the L-system based on this example to model the propagation shape of the crack in real time. Although physics based crack generation can analyze and model accurate cracks, it has a disadvantage of slow computation because of its high computational cost, and procedural methods have a relatively fast rate of continuity, but are not sufficient to capture accurate crack characteristics. We modeled cracks in glass using L-system to achieve both of these advantages. As a result, it realistically represented the microscopic crack patterns of glass in real time.

A Simple Model of Shrinkage Cracking Development for Kaolinite (수축 균열 발달 과정을 위한 단순 모델)

  • Min, Tuk-Ki;Nhat, Vo Dai
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.29-37
    • /
    • 2007
  • The experiments have been conducted on Kaolinite in laboratory to investigate the development of shrinkage cracking and propose a simple model. Image analysis method consisting of control point selection(CPS) technique is used to process and analyze images of soil cracking captured by a digital camera. The distributions of crack length increment and crack area increment vary as a three-step process. These steps are regarded as stages of soil cracking. They are in turn primary crack, secondary crack and shrinkage crack stages. In case of crack area, the primary and secondary stages end at normalized gravimetric water content(NGWC) of 0.92 and 0.70 for different specimen thicknesses respectively. In addition, the primary stage in case of crack length also ends at NGWC of 0.92 while the secondary stage stops at NGWC of 0.79, 0.82, and 0.85 for the sample thicknesses of 0.5, 1.0, and 2.0 cm respectively Based on the experimental results, the distributions of crack length increment and crack area increment appear to be linear with a decrease of NGWC. Therefore, the development of shrinkage cracking is proposed typically by a simple model functioned by a combination of three linear expressions.

Classification of Acoustic Emission Signals for Fatigue Crack Opening and Closure by Artificial Neural Network Based on Principal Component Analysis (주성분 분석과 인공신경망을 이용한 피로균열 열림.닫힘 시 음향방출 신호분류)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.532-538
    • /
    • 2002
  • This study was performed to classify the fatigue crack opening and closure for three kinds of aluminum alloy using principal component analysis (PCA). Fatigue cycle loading test was conducted to acquire AE signals which come from different source mechanisms such as crack opening and closure, rubbing, fretting etc. To extract the significant feature from AE signal, correlation analysis was performed. Over 94% of the variance of AE parameters could accounted for the first two principal components. The results of the PCA on AE parameters showed that the first principal component was associated with the size of AE signals and the second principal component was associated with the shape of AE signals. An artificial neural network (ANN) an analysis was successfully used to classify AE signals into six classes. The ANN classifier based on PCA appeared to be a promising tool to classify AE signals for fatigue crack opening and closure.

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.

Effects of Reinforcement of Steel Fibers on the Crack Propagation of Fissured Clays (균열점토의 균열진행에 대한 강섬유의 보강효과)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.119-134
    • /
    • 1994
  • In order to assess the possibility of using steel fibers in the fissured ciays, uniaxial compression tests were performed on both unreinforced and reinforced clay samples containing a pre-existing crack. Test results showed that the steel fiber reinforcement increased resistance to cracks initiation and their propagation, and therefore increased both stress at crack growth initiation and peak stress at failure. The increase in resistance to cracks initiation and their propagation was related to the arresting or deflecting the crack propagation in clay samples by steel fibers. A theoretical interpretation of experimental results was made using fracture mechanics theory and pull-out mechanisms in fiber reinforced materials. It was revealed that the steel fibers had bridging effect through their pull-out action that caused an increased resistance to the propagation of the cracks in the samples. The predicted pull-out force based on theoretical analyses agreed reasonably well with the measured values obtained from pull-out tests.

  • PDF

Corrosion Resistance of Blended Concrete and Its Application to Crack Healing (혼합 콘크리트의 부식 저항성과 균열 치유 적용)

  • Lee, Chang-Hong;Kim, Tae-Sang;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.689-696
    • /
    • 2009
  • In this study, electro-deposition method was applied to heal cracks in various blended concrete. The performance of the method was indirectly monitored by measuring impressed voltage, electrolyte, galvanic current monitoring, linear polarization resistance, and directly by image analysis of the cracks. The indirect and direct monitoring values are compared to develop guidelines for relating the indirect measures to actual crack healing. As a result, It was found that impressed voltage was convergence to 2.9V after 20000 minutes. From the galvanic current test results of artificial crack healing, the corrosion resistance showed that the order of 0.4 $>$ 0.6 $>$ 0.5 water to cement ratio. Furthermore, in view of binder, the corrosion resistance order was calculated OPC $>$ 60%GGBS $>$ 10%SF $>$ 30%PFA. Finally, It was found that 76.47% of healed crack surface calculated from the artificial crack healing technique using electrochemical deposition method.

A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites (손상감지용 CNT 나노복합재료의 손상 감지능 및 보강효과 연구)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.219-224
    • /
    • 2014
  • Nancomposites manufacture has been developed rapidly, because of reinforcing effects of CNT in terms of mechanical, electrical and thermal properties. In this study, 10 wt% CNT paste was fabricated with good dispersion state and easy processability. Damage sensing and reinforcing effect of CNT paste were investigated in nanocomposites. 10 wt% CNT paste exhibited better tensile and flexural properties than those of general 1 wt% CNT nanocomposites. To observe the healing effect of CNT paste, a crack was made artificially with 30wt% CF30wt%/PP composites, and the CNT paste was filled inside the crack. The damage sensing of CNT paste in CF30wt%/PP composites was investigated by electrical resistance measurement and mechanical tests. CNT paste exhibited good reinforcing effect in mechanical properties of CF30wt%/PP composites, and this reinforcing effect was getting better with larger cracks. The reason was because CNT paste had good interfacial adhesion with CF30wt%/PP composites to resist crack propagation. In electrical resistance measurement, there was a jump in electrical resistance signal at the adhesion interface. The jumping signal could be used to predict fracture of CF/PP composites. CNT nanocomposites for damage sensing had crack reducing effect and damage detection using electrical resistance method.

A proposed temperature crack index table based on correlation between temperature cracks and construction methods in subway concrete box structures (지하철 콘크리트 BOX 구조물의 수화균열에 대한 상관관계 분석 및 온도균열지수표 제시)

  • Song, Suk-Jun;Park, Ji-Woong;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1437-1443
    • /
    • 2010
  • Thermal stresses due to the heat of hydration can cause extensive cracking in subway structures. In order to reduce heat cracks, construction methods (e.g. sequential or skipping construction methods) need to be changed. However, to our knowledge, the existing literature contains little information on the correlation between heat cracks and construction methods. Thus, in this study, the temperature crack index table was suggested based on construction lengths (6 m, 9 m and 18 m), concrete mixtures (Type I cement with FA of 20 % in cement weight, Type IV cement with FA of 10 % in cement weight, and mixture of three different cements), construction seasons (spring or autumn, summer and winter) and construction method (sequential or skipping construction methods). The index table can be easily used corresponding to changes in concrete placing method at the construction site. Also, the correlation of cracking due to sequential or skipping construction methods was derived based on the statistical approaches.

  • PDF