• Title/Summary/Keyword: 균열 검출

Search Result 233, Processing Time 0.025 seconds

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

A Study on Environmentally Friendly Soil Pavement Materials Using Weathered Soil and Inorganic Binder (화강풍화토와 무기질 결합재를 활용한 친환경 흙포장에 관한 연구)

  • Jung, Hyuksang;Jang, Cheolho;An, Byungjae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In this study, the problem of existing soil pavement is a long-term durability lack and crack occurrence. It complements in order to develop the environmental soil pavement material which composites readily blended mineral binder of liquid and decomposed granite soils. It was estimated optimal mixture proportion for unconfined compressive strength, permeability, $Cr^{6+}$detection test, SEM test with age, freezing and thawing test. It resulted mixture proportion of powder types mineral binder for rates of cement : fly ash : plaster was optimal rates of 50 : 33 : 7, and $Cr^{6+}$detection test as a result was a slight production. SEM test with 3days as a result was made Ettringite. It was found that this material was early development of early-strength for chemical. This study indicated that it will execute field appliciability Evaluation test, examination of soil pavement method with decomposed granite soils and mineral binder.

  • PDF

A Study on the Detection of Interfacial Defect to Boundary Surface in Semiconductor Package by Ultrasonic Signal Processing (초음파 신호처리에 의한 반도체 패키지의 접합경계면 결함 검출에 관한 연구)

  • Kim, Jae-Yeol;Hong, Won;Han, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.369-377
    • /
    • 1999
  • Recently, it is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research. considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness. Accordingly, for the detection of delamination between the junction condition of boundary microdefect of thin film sandwiched between three substances the results from digital image processing.

  • PDF

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Analysis of changes in composition of amber with ageing using pyrolysis/GC/MS (열분해/GC/MS를 이용한 열화 호박(amber)의 성분 변화 분석)

  • Park, Jongseo
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Ambers have been used mostly as beads, jewelry and ornaments from ancient times and excavated as a buried artifact. When excavated, they are severely weathered to be cracked, exfoliated and disintegrated. Monitoring of changes in composition of amber according to weathering is very important for diagnosing the condition of amber and applying conservation materials and techniques. In this study, we tried to find the components of amber by analyzing amber with pyrolysis/GC/MS. The changes in the composition of pyrolzates after artificial ageing for 60 days under heat and oxygen were also observed. Abietic acid was detected as a main component of fresh amber and monoterpene, alkene, aromatic hydrocarbon were detected as major pyrolyzates. Changes with artificial ageing was estimated by comparing the peak area ratio of 23 components, and it was found that abietic acid abruptly decreased in the presence of heat and oxygen together, revealing that oxygen is a key factor to the deterioration of amber. It was also tried to understand the weathered surface of original amber gemstone based on the result of this ageing experiment.

Time-Based Characteristics of Acoustic Emission During Dental Composite Restoration (치아 와동의 복합레진 수복시 음향방출의 시간적 발생 특성)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.169-174
    • /
    • 2011
  • Acoustic emission (AE) signals were detected and analyzed in real time during the polymerization shrinkage of composite resin restoration in an artificial dental ring with a class I cavity. Most AE hit events were observed in the initial curing period of the 1st region with high contraction rate. The range of the $2^{nd}$ region for the stainless steel specimen was shorter than that for the PMMA specimen but longer than that for the human dentin specimen. AE hit events showed a blast-type signal having an amplitude in the range of 25.45 dB and a frequency band of 100.200 kHz or 240.300 kHz. These values of amplitude and frequency indicated the fracture of resin or of the adhesive layer.

Development of a Severity Level Decision Making Process of Road Problems and Its Application Analysis using Deep Learning (딥러닝을 이용한 도로 문제점의 심각도 판단기법 개발 및 적용사례 분석)

  • Jeon, Woo Hoon;Yang, Inchul;Lee, Joyoung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.535-545
    • /
    • 2022
  • The purpose of this study is to classify the various problems in surface road according to their severity and to propose a priority decision making process for road policy makers. For this purpose, the road problems reported by Cheok-cheok app were classified, and the EPDO was adopted and calculated as an index of their severity. To test applicability of the proposed process, some images of road problems reported by the app were classified and annotated, and the Deep Learning was used for machine learning of the curated images, and then the other images of road problems were used for verification. The detecting success rate of the road problems with high severity such as road kills, obstacles in a lane, road surface cracks was over 90%, which shows the applicability of the proposed process. It is expected that the proposed process will make the app possible to be used in the filed to make a priority decision making by classifying the level of severity of the reported road problems automatically.

Non-contact mobile inspection system for tunnels: a review (터널의 비접촉 이동식 상태점검 장비: 리뷰)

  • Chulhee Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.245-259
    • /
    • 2023
  • The purpose of this paper is to examine the most recent tunnel scanning systems to obtain insights for the development of non-contact mobile inspection system. Tunnel scanning systems are mostly being developed by adapting two main technologies, namely laser scanning and image scanning systems. Laser scanning system has the advantage of accurately recreating the geometric characteristics of tunnel linings from point cloud. On the other hand, image scanning system employs computer vision to effortlessly identify damage, such as fine cracks and leaks on the tunnel lining surface. The analysis suggests that image scanning system is more suitable for detecting damage on tunnel linings. A camera-based tunnel scanning system under development should include components such as lighting, data storage, power supply, and image-capturing controller synchronized with vehicle speed.

Interfacial fracture analysis of human tooth/composite resin restoration using acoustic emission (음향방출법을 이용한 치아/복합레진 수복재의 계면부 파괴해석)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.45-51
    • /
    • 2009
  • The marginal integrity at the composite resin-tooth interface has been analyzed in real time through acoustic emission (AE) monitoring during the polymerization shrinkage of composite resin subjected to the light exposure. It was found that AE signals were generated by the polymerization shrinkage. Most AE hit events showed a blast type signal having the principal frequency band of 100-200kHz. Bad bonding states were indicated by many hit events in the initial curing period of 1 minute with high contraction rate. The quantity of hit events for the human molar dentin specimen was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. The better the bonding state, the less the AE hit events. The AE characteristics were related with the tensile crack propagation occurring in the adhesive region between the composite resin and the ring substrate as well as the compressive behavior of the ring substrate, which could be used for a nondestructive characterization of the marginal disintegrative fracture of the dental restoration.