• Title/Summary/Keyword: 균열휨

Search Result 544, Processing Time 0.023 seconds

Flexural Analysis of Steel Fiber Rreinforced Concrete Beam (강섬유 보강 콘크리트 보의 휨 해석)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • An analytical simulation of the flexural behavior of SFRC beam has been illustrated. Curvature distributions and crack opening in critical region were taken into account. Compressive and tensile constitutive models which express post-peak behavior of SFRC with stress-crack opening relationships were incorporated in simulating nonlinear flexural behavior of the beam. The model was able to predict test results with reasonable accuracy. Behavior of the critical section and effects of different factors m the flexural behavior of SFRC beam were investigated. Simple observation and statistical approach have been made in selecting most influential parameters in flexural behavior of SFRC.

  • PDF

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Prediction of Deflection of Reinforced Concrete Beams due to Creep (크리프에 의한 철근콘크리트 보의 처짐 예측)

  • 이상순;김용빈;김진근;이수곤
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 1998
  • An approximate method for the calculation of creep deflections of reinforced concrete beams under sustained service loads is proposed. The position of neutral axis and strain and stress distribution of fully cracked section after creep is determined from the requirements of strain compatibility and equilibruim of a section and then the long-term flexural rigidity of fully cracked section is determined based on the new neutral axis. The long-term flexural rigidity of uncracked section at the level of the reinforcenment. The approach of calculating long-term effective flexural rigidity and defections is similar to the current American Concrete Institue procedure for calculating effecitve moment of inertia and short-term deflections. The accuracy of the analysis is verified by comparison with several experimental mesurements of beam deflectons. The result is good between the theotetical values and mesured valus.

Punching Shear Behavior of High-Performance Steel Reinforced Two-Way Concrete Slabs (고성능 철근으로 보강된 2방향 콘크리트 슬래브의 펀칭전단거동)

  • Yang, Jun-Mo;Lee, Joo-Ha;Shin, Hyun-Oh;Kook, Kyung-Hun;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.75-76
    • /
    • 2010
  • Two-way slabs reinforced with high-performance steels were constructed and tested. The influences of the yield strength of flexural reinforcements, the flexural reinforcement ratio, and concentrating the reinforcement in the immediate column region on the punching shear resistance, post-cracking stiffness, strain distribution, and crack control were investigated.

  • PDF

A Study on the Diagnostic System for Architectural Elements Using Radio Frequency (무선주파수를 응용한 건축부재의 손상자현 시스템에 관한 연구)

  • Kim, Dong Hyun;Choi, Young Wha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • Reinforced concrete buildings will be deteriorated as passed time or effect of an earthquake, etc in main elements. In order to manage such cracks, time and efforts, expense, etc, are required. So micro lead switch sensors are embedding or bonding in flexible specimens, and these are smart elements for diagnostic crack damages by external force such as physical load, dynamic load, etc in this study. The monitoring to crack damages are studied using radio frequency system. If load is received on the center of flexible specimens, embedded and bonded lead switch sensors will be destroyed, and these become to send signals of damages at radio frequency system connected with lead switch sensors. This study is fundamental research of the diagnostic system for architectural elements using radio frequency.

Cracking Behavior and Flexural Performance of RC Beam with Strain Hardening Cement Composite and High-Strength Reinforcing Bar (고강도 철근과 변형경화형 시멘트복합체를 사용한 보의 균열거동 및 휨 성능)

  • Jang, Seok-Joon;Kang, Su-Won;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • This paper describes the effect of strain hardening cement composite (SHCC) material on structure performance of reinforced concrete (RC) beams with high-strength reinforcing bar. Also, this paper explores the structure application of SHCC in order to mitigation cracking damage and improve the ductility of flexural RC members. The prediction model for flexural strength of doubly reinforced SHCC beams are investigated in this study. To achieve the these objectives, a total of 6 rectangular beam specimens were tested under four point monotonic loading condition. The main parameters included the types of cement composite and reinforcing bar. Test results indicated that reinforced beam specimens with SHCC material were improved the structure performances and damage characteristics. Specifically, replacement of conventional high-strength concrete with SHCC materials has the potential of high-strength steel bar as flexural reinforcement on RC members. It is remarkable that suggested method of reinforced SHCC beams with high-strength reinforcing bar could be used usefully to the structure design.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Performance of Geogrids for Retarding Reflection Crack of Asphalt Overlay Pavement (아스팔트 덧씌우기의 반사균열 지연을 위한 지오그리드의 적용성 연구)

  • Kim, Kwang-Woo;Doh, Young-Soo;Kim, Bun-Chang;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.1-12
    • /
    • 2005
  • This study was conducted to evaluate effect of geogrid and fabric, which are used underneath the overlaid asphalt pavement for retarding reflection cracking by simulated laboratory test. In this study, an interlayer at the interface between old concrete pavement surface and overlaid asphalt mixture, and polymer-modifier were used as an effort of retarding reflection crack initiation and for strengthening mixture. Five products were used in preparation of asphalt concrete beam specimen which was tack coated on top of jointed concrete block. Simulated Mode I and II fracture test were conducted under wheel loading and results were compared among those products. From the test results, several material and reinforcement combinations were observed to have a significant retardation effect against reflection cracking. The most effectively strengthened pavement against reflection cracking was found to be the LDPE-modifier asphalt mixture with a grid reinforcement at the bottom.

  • PDF