• 제목/요약/키워드: 균열진전속도와 응력 확대 계수

검색결과 40건 처리시간 0.023초

압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구 (A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature)

  • 박경동;김정호;윤한기;박원조
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

원자로 압력용기용 강의 고온피로특성에 미치는 응력비의 영향 (Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at Higt Temperature.)

  • 박경동;정찬기;김정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1108-1114
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516-Grade 70 steel which is used for pressure vessels was experimentally examined under the condition of at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ration of R=0.1 and 0.3. The fatigue crack propagation rate , da/dN, related with the stress intensity factor range, $\vartriangle$N, was influenced by the stress ration within the stable growth of fatigue crack(Region II) with an increase in $\vartriangle$N. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations revels that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack and oxide-induced by high temperature.

  • PDF

원전 배관의 결함 평가를 위한 해석 (Analysis for Defect Evaluation of Pipes in Nuclear Power Plant)

  • 이준성
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3121-3126
    • /
    • 2013
  • 원전 배관의 건전성평가는 원자로 안전을 위해 중요하며 결함발견 시 반드시 건전성을 확보해야만 한다. 균열을 갖는 구조물에 대한 정확한 응력확대계수 해석과 균열성장속도는 파괴강도와 피로수명을 평가하는데 필요로 한다. 피로설계와 수명평가는 배관, 산업공장장비 등과 같은 구조물을 설계하는데 극히 중요하다. 응력확대계수를 이용한 균열간의 상호 간섭해석은 유한요소법으로 구하였다. 내압을 받는 원통형구조물의 경우 표면균열의 인접점에서 간섭이 가장 크게 일어남을 확인하였다. 또한, 반복하중 균열에 대해서는 균열 성장평가와 더불어 피로하중에 의한 균열진전을 예측하기 위한 피로해석을 수행하였다.

아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구 (Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode)

  • 김원범
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.363-368
    • /
    • 2024
  • 선박, 해양구조물 또는 해상풍력 발전설비 하부구조와 같이 해양환경에서 사용되는 강구조물은 부식이 쉽게 발생한다. 본 연구에서는 실험을 통하여 희생전극으로 많이 사용되는 아연전극의 방식전위와 동등한 -1050mV vs. SCE에서 환경하중에 기인하는 부식피로균열 진전특성에 대하여 고찰하였다. 이를 위하여 본 연구에서는 -1050mV vs. SCE의 음극방식이 해수환경중의 피로균열 진전에 미치는 영향에 대해 합성해수중에서 파랑주기를 고려하여 실험적 고찰을 실시하였다. 음극방식에 의한 방식법은 부식을 차단하지만 과도한 방식은 화학반응에 의하여 수소를 발생시키며, 또한 석회질퇴적물을 발생시킨다. 피로균열진전율은 실험초기에는 해수부식환경하에서의 진전율보다 빠른구간이 나타났다. 그리고 균열길이가 증가하여 응력확대계수 K가 커질수록 균열의 진전율은 해수중의 피로균열진전율보다 느려지는 현상이 나타났다. 그러나 대기중의 균열진전속도보다는 항상 빠른 진전속도를 나타내었다.

판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분 (A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy)

  • 김승권;이억섭
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1415-1422
    • /
    • 2011
  • 운송기계구조물의 제작에 사용되는 판재 알루미늄 합금재료는 일정한 피로응력조건하에서 두께에 따라 균열진전속도의 차이를 보인다. 이러한 두께효과는 판재 알루미늄합금의 주요한 피로파괴특성 중 하나이다. 본 연구에서는 일정한 피로응력조건하에서 실시한 후판 및 박판 Al 2024-T3 합금재료의 피로 시험을 통하여 두께효과를 파악하고, 이를 형상인자인 두께비, $R_t$ 및 하중인자인 두께별 등가유효응력확대비, $U_{i}^{equ}$에 의한 상호관계식, $U_{i}^{equ}=f(R_t)$로 나타내었다. 그리고 두께효과에 의한 후판 대비 박판시험편의 균열진전 지연거동을 ${\Delta}K$ 환산법을 사용하여 정량적으로 분석하였다. 두께효과의 경향을 정량으로 나타내기 위해 두께감소율(DoT)과 응력확대계수범위, ${\Delta}K$의 감소율(DoS) 등의 값을 구하여 이들 상호관계를 규명하였다.

등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발 (Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials)

  • 황재석;신동철;김태규
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구 (A Study on Prediction of Stress Intensity Factor and Fatigue Crack Growth Behavior Using the X-ray Diffraction Technique)

  • 임만배;부명환;공유식;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.673-680
    • /
    • 2003
  • This study verified the relationship between fracture mechanics parameters(ΔK, ΔK$\sub$eff/, K$\sub$max/) and X-ray parameters (${\alpha}$$\sub$r/, B) for SG365 steel at elevated temperature up to 300$^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ΔK region, reach to a maximum value at a certain value of K$\sub$max/ or ΔK and then decrease. Residual stress were independent on stress ratio by arrangement of ΔK and half value breadth were independent by the arrangement of K$\sub$max/. The equation of ${\alpha}$$\sub$r/ - ΔK was established by the experimental data. Therefore, tincture mechanics parameters could be estimated by the measurement of X-ray parameters.

X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구 (A study on prediction of stress intensity factor and fatigue crack growth behavior using the X-ray diffraction technique)

  • 임만배;공유식;부명환;차귀준;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.317-323
    • /
    • 2001
  • This study verified the relationship between fracture mechanics parameters$({\Delta}K,\;{\Delta}K_{eff},\;K_{max})$ and X-ray parameters $(\sigma_r,\;B)$ for SG365 steel at elevated temperature up to $300^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ${\Delta}K$ region, reach to a maximum value at a certain value of $K_{max}\;or\;{\Delta}K$ and then decrease. Residual stress were independent on stress ratio by arrangement of ${\Delta}K$ and half value breadth were independent by the arrangement of $K_{max}$. The equation of $\sigma_r-{\Delta}K$ was established by the experimental data. Therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

  • PDF

현가장치재의 피로수명향상 공법개발에 관한 연구 (A Study of Development Methods of Fatigue Life Improvement for the Suspension Material)

  • 박경동;정찬기
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

탄소강-스테인리스강 용접부의 피로균열진전 특성에 관한 연구 (A Study on the Fatigue Crack Growth Characteristics for the Weldment of Carbon steel-Stainless steel)

  • 권재도;김우현;김길수;박중철;배용탁;김중형
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.47-54
    • /
    • 1998
  • Various equipments in plants are welded with two different materials and it is required to investigate the effects of fatigue crack propagation on the neighborhood of a welded portion. The characteristics of fatigue crack growth in the base metal of carbon and stainless steel, in the carbon and stainless steel sides located in the neighborhood of welded portion (carbon/stainless steel), respectively and welded portion, are investigated. The results show that the crack growth in the welded portion (carbon/stainless steel) is an average value of the crack growths in the carbon and stainless steel respectively located in the neighborhood of the welded portion. It is found that the crack growth in the welded portion is not significantly different from those in the carbon and stainless steel sides. Hence it can be concluded that the structure welded with two different materials wold not impede the integrity based on the fatigue crack growth.

  • PDF