• Title/Summary/Keyword: 균열진전속도와 응력확대계수범위

Search Result 13, Processing Time 0.026 seconds

A Study on the Fatigue Crack Growth Behavior of Surface Cracks (SB41 강의 표면 피로균열 진전 특성에 관한 연구)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.916-923
    • /
    • 1991
  • 본 연구에서는 표면 균열이 있는 평판의 탄소성 피로하중 상태에서 성장하는 균열 형태의 변화와, 작용하는 응력의 크기에 따른 균열 개페구 특성의 변화를 연구하 였다.또, 유효 응력 확대계수 범위, .DELTA.K$_{eff}$와 J적분범위, .DELTA.J가 탄소성 응력 상태에서의 표면 피로균열 진전속도를 나타내는 역학양으로 사용되는데 따른 적합성등 을 검토하였다.

Description of crack growth behavior of SB41 steel in terms of J integral (J적분에 의한 SB41강의 피로균열 진전 특성 평가)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1568-1575
    • /
    • 1990
  • Fatigue crack growth behavior was investigated in the center cracked plate of KS SB41 steel and the relation between the crack growth rate and various mechanical parameters was studied at small scale yielding, large scale yielding and full scale yielding. The crack opening ratio U was about 0.6-0.8 and had the larger value in the case of load control than that of strain control. Effective stress intensity factor range, .DELTA.K$_{eff}$ and J integral range, .DELTA.J were obtained from the notion of crack opening, and the crack growth rate was expressed with these values. The value of J integral range increased rapidly at stress ratio, R=0 in full scale yielding of load control test. COD value also increased rapidly with the increase of ligament net stress at large scale yielding of load control test.t.

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at Higt Temperature. (원자로 압력용기용 강의 고온피로특성에 미치는 응력비의 영향)

  • 박경동;정찬기;김정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1108-1114
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516-Grade 70 steel which is used for pressure vessels was experimentally examined under the condition of at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ration of R=0.1 and 0.3. The fatigue crack propagation rate , da/dN, related with the stress intensity factor range, $\vartriangle$N, was influenced by the stress ration within the stable growth of fatigue crack(Region II) with an increase in $\vartriangle$N. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations revels that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack and oxide-induced by high temperature.

  • PDF

A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy (판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분)

  • Kim, Seung-Gwon;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1415-1422
    • /
    • 2011
  • Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, $U_{i}^{equ}=f(R_t)$ which is determined by the shape factor, thickness ratio, $R_t$ and the loading factor, equivalent effective stress intensity ratio depending on thickness, $U_{i}^{equ}$. And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using ${\Delta}K$ conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, ${\Delta}K$ (DoS) and identified the relation between them to present the nature of thickness effect in this work.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

A Study on the Fatigue Crack Growth Characteristics for the Weldment of Carbon steel-Stainless steel (탄소강-스테인리스강 용접부의 피로균열진전 특성에 관한 연구)

  • 권재도;김우현;김길수;박중철;배용탁;김중형
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 1998
  • Various equipments in plants are welded with two different materials and it is required to investigate the effects of fatigue crack propagation on the neighborhood of a welded portion. The characteristics of fatigue crack growth in the base metal of carbon and stainless steel, in the carbon and stainless steel sides located in the neighborhood of welded portion (carbon/stainless steel), respectively and welded portion, are investigated. The results show that the crack growth in the welded portion (carbon/stainless steel) is an average value of the crack growths in the carbon and stainless steel respectively located in the neighborhood of the welded portion. It is found that the crack growth in the welded portion is not significantly different from those in the carbon and stainless steel sides. Hence it can be concluded that the structure welded with two different materials wold not impede the integrity based on the fatigue crack growth.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF