• Title/Summary/Keyword: 균열의 진전

Search Result 643, Processing Time 0.02 seconds

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 피로파괴거동에 관한 연구)

  • Jang, Jeong-Won;Sohn, Se-Won;Lee, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.13-18
    • /
    • 1999
  • 섬유강화금속적층재(Fiber Reinforced Metal Laminates. FRMLs)는 고강도금속과 섬유강화복합재료(Fiber Reinforced Composite Materials)를 적층한 새로운 종류의 하이브리드 재료이다. 국산 아라미드 섬유인 헤라크론(Heracron, 코오롱)과 국내 복합재료 제작기술(한국화이바)을 사용하여 섬유강화금속적층재를 제작하고, 이를 HERALL(Heracron Reinforced Aluminum Laminate)이라 명명하였다. HERALL(Heracron Reinforced Aluminum Laminate)의 피로균열성장특성 및 피로균열진전 방해기구를 ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) 및 Al 2024-T3과 비교해석하였다. HERALL과 ARALL은 균열진전을 저지하는 아라미드 섬유로 인해 뛰어난 피로균열성장특성 및 피로저항성을 보여주었다. 아라미드 섬유의 균열브리드징으로 인한 $K_{max}$의 감소량과 Al 2024-T3의 균열닫힘으로 인한 $K_{max}$의 증가량을 구할 수 있는 응력-COD법을 사용하여 실제로 균열성장에 영향을 준 유효응력확대계수범위를 측정하였다. 균열선단으로부터 균열을 가공하면서 COD 변화량을 측정하여 균열브리징 영역을 구하였다.

  • PDF

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite (SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

Prediction of crack propagation path in IC package by BEM (경계요소법에 의한 반도체 패키지의 균열진전경로 예측)

  • Song, Chun-Ho;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.286-291
    • /
    • 2001
  • Applications of bonded dissimilar materials such as IC package, ceramic/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edges in bonded joints of dissimilar materials. In orer to understand the package crack emanating from the edge of Die pad and Resin, fracture mechanics of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method. Crack propagation angle and path by thermal stress were numerically simulated with boundary element method.

  • PDF

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

A Stochastic Analysis of Crack Propagation Life under Constant Amplitude Loading (균일진폭 하중하에서의 확률론적 균열진전 수명해석)

  • 윤한용;양영순;윤장호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1691-1699
    • /
    • 1992
  • The experimental results of fatigue crack propagation under constant amplitude loading show that intra-and inter-specimen variability exist. In this paper, a stochastic model for the estimation of mean and variance of crack propagation life is presented To take into account the intra-specimen variability, the material resistance against crack propagation is treated as an 1-dimensional spatial stochastic process, i. e. random field, varying along the propagation path. For the inter-specimen variability, C in paris equation is assumed to be a random variable. Compared with experimental results reported, the present method well estimate the variation in fatigue crack propagation life. And it is confirmed that the thicker the specimen thickness is, the less the variation of propagation life is.

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

A Numerical Study on the Fracture Evolution and Damage at Rock Pillar Near Deposition Holes for Radioactive Waste (방사성폐기물 처분공 주변 암주에서의 균열 진전 및 손상에 대한 수치해석적 연구)

  • 이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.211-221
    • /
    • 2003
  • At Aspo hard rock laboratory in Sweden, an in-situ heater experiment called "$\"{A}"{s}"{p}"{o}$ Pillar Stability Experiment (APSE)" is prepared to assess capability to predict spatting and stability in a rock mass between deposition holes for radioactive waste. To Predict reasonably fracturing process at rock pillar under a planned configuration before testing, a boundary element code FRACOD has been applied for modelling. The code has been improved to simulate explicitly fracture evolution both at rock boundaries and in intact rocks. A new inverse stress reconstruction technique using boundary element has been also developed to transfer stress field by excavation and thermal loading into the FRACOD model. This article presents the results from predictive modelling far the planned in-situ test condition. Excavation induced stresses might cause slight fracturing in the pillar walls. Typical shear fractures have been initiated and propagated near central pillar walls during 120 days of heating, but overall rock mass remained stable under the considered configuration. The effects of pre-existing joints and properties of fractures are also discussed. It is found from the results that FRACOD can properly model essential rock spatting and propagation at deep tunnels and boreholes.at deep tunnels and boreholes.

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Fatigue Crack Propagation of Random Short Fiber SMC Composite (非規則性 短纖維强化 SMC複合材料의 疲勞龜裂 進展에 관한 硏究)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 1989
  • The fatigue crack propagation of random short fiber SMC composite material was investigated. In macroscopic viewpoint, SMC composite material was treated as isotropic material and was analyzed in terms of conventional fracture mechanics. Experiments were conducted on mode I and mixed respectively and various loading level was applied to each mode. Fatigue crack growth can be explained in three steps and most of fatigue life is consumed in initial crack growth. In this experiments, power law, i.e, da/dN=C(C.DELTA.K)$^{m}$ , between fatigue crack growth rate and stress intensity factor range, was valid and the value of the exponent m is about 10, which is much higher than that of other metals. Fracture mechanism was also investigated by SEM fractographic study.