• Title/Summary/Keyword: 균열양상

Search Result 303, Processing Time 0.024 seconds

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가)

  • Jo, Eunsun;Choi, Jin Woong;Kim, Min Sook;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.

Experimental Study on Structural Behavior of Joints for Precast Concrete Segment (프리캐스트 콘크리트 세그먼트 접합부의 구조거동에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Jung, Bo-Na;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.59-65
    • /
    • 2009
  • The use of precast concrete segments facilitates quality control and reduces construction cost and period. However, as a construction method it has limited applicability, for it demonstrates structurally disadvantageous behaviors due to stress concentration and large displacement in the joint of assembled segments. This paper proposes a precast segment joint with improved structural performance, and experimentally assesses the structural performance of the proposed joint in terms of crack and failure modes, deformation, maximum load and displacement ductility. In consideration of constructability and structural performance, this paper suggests different types of joint with shear key, post tension and steel rods as variables, and performs a static loading test on them. The test results show that the performance of SGSP specimens is around 84% that of a monolithic specimen in terms of the maximum load, while their ductility behaviors are better than the monolithic specimen. This result confirms the improved structural performance and applicability of the proposed joint.

A Study on Punching Shear of Column-Foundation Joint Connection for Reinforced Steel Base Plate (Base Plate로 보강된 기둥-기초 접합부의 뚫림전단강도 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, the RC column-based joint connection part carry out loading test by reinforced hollow or extended Base Plate in order to confirm that RC joint punching shear reinforcement effect of applying the Base Plate. Base Plate thickness, extension length, size, and type as the variable, Base Plate suitable for the stress distribution and shape and dimensions confirmed through experiment and then reinforcing effect was analyzed. Experimentally, vertical load transmitted to the Base Plate from column to foundation is effective to stress distribution and then, type of hollow reinforcement more efficient than a closed. Through experiment, improve performance and ductility due to reinforcement and relative to the thickness of the existing foundation reduced even showed better performance than the existing. The behavior of the reinforced specimens be able to induce from brittle to ductile. Experiment on loading to destroy performed the pattern of cracks, destruction aspect before and after reinforcement.

Comparison of Rock Young's Moduli Determined from Various Measurement Methods (다양한 시험법으로 규명된 암반 탄성계수 비교)

  • Ryu Kuen-Hwan;Chang Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-14
    • /
    • 2006
  • Various measurements were carried out to estimate the modulus of deformation in two dominant rock types in Korea: granite and gneiss. Four most commonly used methods were utilized: Goodman jack tests, PS well logging, laboratory ultrasonic tests and laboratory uniaxial loading tests. Laboratory static and dynamic Young's moduli depend on the magnitude of the applied axial stress, range of Sequency used for measurement and the loading/unloading condition. As the laboratory measurement condition approaches to that in situ, the resultant moduli also appear to be comparable to that in situ. This suggests that the simulation of in situ stress condition is important when the modulus of rock is determined in the laboratory Dynamic Young's modulus is generally higher than static Young's modulus because of (micro)crack behavior in response to the stress, different range of frequency used for measurements, and the effect of the amplitude of deformation. Understanding of the relations in moduli from different measurement methods will help estimate appropriate in situ values.

Selection and Technical Development for Seed Pelleting Material of Codonopsis lanceolata Trautv (더덕 종자의 펠렛팅을 위한 소재 탐색 및 기술개발)

  • Choi, Kyeong-Gu;Lee, Youn-Su;Cha, Kwang-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.130-133
    • /
    • 2006
  • This study was conducted to select Codonopsis lanceolata seed's new pelleting particulate materials and adhesives. Different adhesives (Polyvinyl alcohol (PVA), Carboxymethyl cellulose (CMC), Polyvinyl pyrrolidone (PVP), Xanthan gum (XG), Arabic gum (AG)) and particulate materials (Illite, Diatomite, Pyrophyllite + Illite + Diatomite (PID), Pyrophyllite + Illite + Talc (PIT), Bentonite + Talc (BT)) were tested for seed pelleting. PID for Codonopsis lanceolata seed pelleting appeared to be the best particulate material. Among the pelleting adhesives, PVP was the best adhesive for seed pelleting, and the optimum concentration for germination of pelleting seed was 1 %. Germination rate of the pelleted seeds treated with PID particulate material and PVP adhesive was higher (86.8%) than those of raw seeds (85.5%). $T_{50}$ and MDG of pelleted Codonopsis lanceolata seed required five and eight days at soil moisture content of 50%, respectively.

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Stability Analysis of Large Slope Based on In-Situ Monitoring and Numerical Analysis (대절토사면의 현장계측 및 수치해석을 통한 사면 안정성 분석 사례)

  • Kim, Byung-Chul;Hwang, Ji-Hoon;Won, Ji-Hyun;Choi, Mun-Kyu;Kwon, Oh-Sung;Song, Chi-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.629-638
    • /
    • 2005
  • 본 연구대상 사면은 연장이 300m이고 최대 사면높이가 80m에 달하는 대절토 사면으로 서 총 11 소단으로 이루어져 있으며, 전 사면에 걸쳐 Soil Nail 공법으로 보강이 되어있다. 사면 상단부에 설치된 2개의 경사계를 이용하여 주기적으로 사면의 수평방향 변위 계측을 실시하던 중, 사면 하부의 소단 굴착과정에서 상대적으로 급격한 사변경사 방향의 수평변위가 발생한 것을 확인하였다. 본 연구에서는 사면의 수평방향 변위 계측결과 분석 및 대상 사면에 대한 수치해석을 통하여 사면의 안정성 여부를 판단하고자 하였으며, 굴착단계별 수평방향 변위량 및 변위 양상을 분석함으로써 급격히 증가한 변위의 원인을 파악하였다. 수치해석을 통해 나타난 사면 굴착 단계에 따른 사면 토체의 소성영역을 도시한 결과, 사면 전체에 걸쳐 대규모 파괴면이 나타났으며 파괴활동면이 Soil Nail 로 보강된 영역의 바깥쪽에 위치하여 사면 안정성 확보를 위한 대책방안이 수립되어야 할 것으로 판단되었다. 또한 보다 자세한 원인 규명을 위한 확인 시추조사를 실시하여 하부 지층 특성을 파악하였으며, 하부에 풍화가 심하고 절리 및 균열이 심한 파쇄구간이 분포하고 있음이 확인되었다. 연구 대상 사면의 변위 계측 결과, 수치해석 결과, 확인 시추 조사 결과 및 예상되는 사면 활동의 규모 등을 고려할 때 사변의 안정성 확보를 위한 대책방안이 수립되어야 하며, 본 사면은 억지말뚝과 Ahchor 공법 적용이 가장 적절할 것으로 판단되었다.

  • PDF

Viscoelastic Behaviors of Geosynthetic-Reinforced Asphalt Pavements (섬유보강 아스팔트 포장의 점탄성 거동연구)

  • In, Sik-Youn;Kim, Hyung-Bae;Ann, Sung-Sun;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.37-45
    • /
    • 2004
  • The asphalt concrete pavement takes various advantages of better riding quality, serviceability and easier maintenance. At the same time, it addresses a weak point of the premature failures due to rapid increasement of traffic volume, heavy vehicles and high temperature in summer. It increases the expenditure of maintenance and repair. In order to improve the performance of asphalt pavement avoiding this premature failure, the use reinforcements with geosynthetics have been considered. Geosynthetics are known as an effective reinforcement to restrain fatigue and reflective cracks in asphalt pavements. In this study, a comprehensive parametric study is conducted to capture the efficiency of geosynthetic-reinforcements using viscoelastic properties of the asphalt concrete(AC) layer. The investigated parameters were reinforcement location, AC layer thickness, temperature distribution across the AC layer and modulus of AC and base layer. As a result of observations, that reinforced asphalt concrete could be used effectively for improving resistance against fatigue cracks and permanent deformation. Especially, when a geogrid was placed at the interface between the asphaltic base and the subbase, tensile stress in the horizontal direction was significantly reduced.

  • PDF

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Statistical Evaluation for Residual Strength of Impacted Composite Materials (충격손상 복합재료의 잔류강도저하거동에 대한 통계적 평가)

  • Kang, Ki-Weon;Lee, Seung-Pyo;Lee, Jin-Soo;Koh, Byung-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.426-434
    • /
    • 2010
  • This study is experimentally performed to evaluate the strength reduction behavior and its statistical properties of plain woven glass/epoxy composites. The results indicate that the major impact damage of plain woven glass/epoxy composites is the fiber breakage and matrix crack, whereas the dominant impact damage of unidirectional carbon/epoxy laminates is the delamination, which depends on the stacking sequence. The residual strength prediction models, previously proposed on unidirectional laminates, are applied to evaluate the residual strength of plain woven glass/epoxy composites with impact damage. Among these models, the results by Caprino and Avva's model have a good agreement with the experimental results. To investigate the variability of residual strength of the impacted composite materials, a statistical model was proposed and its results were in conformance with the experimental results regardless of their thickness.