• Title/Summary/Keyword: 균열성장수명

Search Result 119, Processing Time 0.029 seconds

A Study on the Prediection of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • 안수홍;김태형;김병민;최재찬;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • In this paper, the fatigue behaviour of typical axisymmetric forward extrusion die is investigated and extrusion process is analyzed by the rigid-plastic finite element method and elasto-plastic finite element method. To approach the crack problem involving crack initiation and propagation in extrusion die, LEFM(Linear Elastic Fracture Mechanics) is introduced and singular element which models stress.strain singularity in the crack tip vincity has been used to obtain an accurate stress intensityu factor values and other results. Form the displacement around the crack tip the stress intensity factor and the effective stress intensity factor at the beginning of the die inlet radius has been calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law to this data the angle and direction of fatigue crack growth has been simulated and these are compared with some experimental results. Using the computed crack growth rate, fatigue life of the extrusion die has been evaluated.

  • PDF

A Study on the Effect of the Stop-hole on the Fatigue Crack Growth Rates in Tensile Members (인장부재(引張部材)에 뚫은 Stop-hole 이 피로균열성장율(疲勞龜裂成長率)에 미치는 영향(影響)에 관한 연구(研究))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.115-124
    • /
    • 1987
  • Stop-hole method is one of the conventional methods for the temporary repair or reinforcement of the member in the case that the structural steel member has a fatigue crack. In this study, the stop-hole method. have been estimated quantitatively in terms of survival life time of the side edge cracked specimen. For this purpose, fatigue tests have been performed on the test specimens and the fatigue crack growth rates of the structural steel (SS41) members have been measured under load of constant amplitude. The results of this experiment show that it is desirable to use the stop-hole method before the crack reaches the region of elasto-plastic behaviour.

  • PDF

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

A Study on the Effect of Overloading on Fatigue Life (과대하중이 피로수명에 미치는 영향에 관한 연구)

  • 김경수;신병천;심천식;박진영;조형민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Ships and ocean structures are subjected to random loads caused by irregular waves. The irregularity of amplitude from random loading affects on fatigue crack growth and fatigue life. However the effects of irregularity of loading on fatigue including random loading have not been explained exactly. Therefore in this paper crack growth tests on DENT specimens under constant-amplitude loading including a single tensile overload are conducted to investigate the effect of overload on crack growth rate. The size of plastic zone and crack growth rate before and after a single tensile overloading are measured using ESPI system. Crack growth retardation model that is characterized by crack growth length and the size of plastic zone was proposed and compared with test result. From the research, the validity of proposed model is examined on crack growth retardation, and consequently fatigue life.

A Study on the Fatigue Characteristics of Transverse Butt-Welded Joints containing Blowholes (블로우홀을 가진 횡방향 맞대기 용접부의 피로특성에 관한 연구)

  • Chang, Dong Il;Kyung, Kab Soo;Cho, Kwang Hyun;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.339-350
    • /
    • 1999
  • In this study, blowholes, a kind of solid defects, were intentionally introduced in transverse butt-welded joints which are widely used for the connection of main members in steel structures to evaluate the fatigue characteristics of these joints with blowholes according to the difference of the size and shape of blowholes, and a series of tests were performed. Static test results proved that the static strength of these joints with blowholes was not affected by their size and shape. From the fatigue test results on these joints with blowholes, the size and shape of blowholes inside the weld metals were strongly affected in fatigue strength, and we suggested the relationship between fatigue strength and their size and shape quantitatively. Also, Using the relationship of fatigue crack growth rate and stress intensity factor range, the fatigue life of transverse butt-welded joints with blowholes can be estimated properly.

  • PDF

Damage Tolerance Design and Prediction of Fatigue Life in Aircraft Structure (항공기구조의 손상허용설계와 피로수명 예측)

  • 황돈영
    • Journal of the KSME
    • /
    • v.35 no.6
    • /
    • pp.468-480
    • /
    • 1995
  • 항공기구조는 항상 피로하중에 노출되어 있고 조류충돌과 같은 불시의 상황에 의해 손상을 입을 가능성을 가지고 있어서 이에 대한 대비책을 마련하지 않으면 인명과 재산상에 막대한 손실을 초래할 가능성이 있다. 따라서 항공기가 개발되는 초기의 설계단계부터 항공기의 안전성확보가 중요하며, 이를 위해서는 적절한 피로수명예측과 손상허용설계를 해나아가는 것이 중요하며, 그 내용을 정리하면 다음과 같다. (1) 항상 손상의 가능성을 인정하고, 이 손상이 존재하는 경우에도 항공기의 안전이 보장 되도록 설계한다. (2) 손상이 발생하면 쉽게 발견되도록 설계한다. (3) 한 부재의 손상이 전 구조물의 파괴로 이루어지지 않도록 다중하중 경로로 설계한다. (4) 손상의 가능성이 있는 부품은 특별관리한다. (5) 안전균열성장 및 잔류강도 요구조건이 충족되도록 검사계획을 수립하며, 이 검사계획에 따라 검사를 수행한다.

  • PDF

Effect of Corrosion on Fatigue Life of Piping material under Repeating Load (반복하중을 받는 배관용 강재의 피로수명에 미치는 부식의 영향)

  • Park, Keyung-Dong;An, Jae-Pil
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.228-229
    • /
    • 2005
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, it was not known that the effect of shot peening in corrosion environment. In this study, the effect of shot peening on corrosion fatigue crack growth of sping steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of spring steel are as follows; the fatigue crack growth rate of the shot peening material was lower than of the un peening material. And fatigue life shows more improvement in the shot peening material than un peening material. This is because the compressive residual stress of surface operate resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

  • PDF

A Case Study of Remaining Life Assessment for Boiler Header (고온 보일러 헤더의 잔여수명평가 사례 연구)

  • Baek, U.B.;Lee, H.M.;Park, J.S.;Kim, D.J.;Yoon, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

Integrity Evaluation for 3D Cracked Structures(II) (3차원 균열을 갖는 구조물에 대한 건전성 평가(II))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Three Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for surface cracks existing in structures. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Nodes are generated by bucket method, and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in cylindrical structures subjected to pressure is calculated. Analysis results by present system showed good agreement with those by ASME equation and Raju-Newman's equation.

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.