• Title/Summary/Keyword: 균열불안정성 해석

Search Result 4, Processing Time 0.022 seconds

Application of Fracture Mechanics Method to Ottshore Structural Crack Instability Analysis (해양구조물의 균열불안정성 해석에 대한 파괴역학의 응용)

  • Rhee, H. C.
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.94-103
    • /
    • 1987
  • 균열불안정 해석법인 COD설계곡선법과 R6파괴 평가도법에 있어서 그 응용 한계의 확립과 타당성 수준의 정량화를 위해 포괄적인 비교 연구가 수행되었다. 참고로서 J-적분 균열불안정성 해석법이 이용되었다. 본 연구의 결과로서, 균열확장의 유무에 대한 R6 파괴 평가도법이 매우 우수한 방법임을 보여준다. COD 설계곡선법에 대한 영국 표준국 순서에 따른 결과로서는, 큰 스캐터 밴드를 가진 상당량의 부당성 해를 보여준다. 이러한 COD설계곡선법의 해를 개선하기 위한 새로운 접근법이 개발되었고, 그 타당성이 입증되었다.

  • PDF

Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed (페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도)

  • Ha, Youn-Doh;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.637-643
    • /
    • 2011
  • The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.