• Title/Summary/Keyword: 균열개구 변위

Search Result 77, Processing Time 0.03 seconds

The Mechanical Properties of Recycled Plastic Fiber-Reinforced Concrete (재활용 플라스틱 섬유보강 콘크리트의 역학적 특성)

  • Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.225-232
    • /
    • 2014
  • This paper concerns the mechanical properties of recycled plastic fiber-reinforced concrete. It presents experimental research results of recycled fiber-reinforced concrete with fiber volume fractions of 0, 0.5, 1.0, 1.5, and 2%. Experiments were performed to measure mechanical properties such as compressive strength, elastic modulus, tensile strength, and length changes. The results show that both compressive strength and elastic modulus decreased as fiber volume fraction increased. In addition, the experimental results show that recycled fiber-reinforced concrete is in favor of split tensile strength, flexural tensile strength, characteristic regarding crack mouth opening displacement, and length changes. The results of this study can be used to provide realistic information for modeling of mechanical properties in recycled plastic fiber-reinforced concrete in the future.

Application of enhanced Reference Stress Method to Nuclear Piping LBB Analysis : Finite Element Validation (원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Heo, Nam-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.741-747
    • /
    • 2001
  • Three-dimensional, elastic-plastic finite element analyses for circumferential through-wall cracked pipes are performed using actual tensile data of stainless steels, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes. The second one is to compare those results with the GE/EPRI estimations. It is found that the J-integral and COD estimations according to the GE/EPRI method can be very sensitive to how the stress-strain data are fitted using the Ramberg-Osgood relation. Moreover, no tendency can be found regarding the most appropriate fitting range for the Ramberg-Osgood fit. On the contrary, the J-integral and COD estimations based on the ERS method give more accurate results than the GE/EPRI estimation. The present results provide confidence in applying the proposed method to the Leak-Before-Break(LBB) analysis.

Dynamic Crack Propagation Analysis for Mild Steel Specimen (연강 시험편에 대한 동적 균열 전파 해석)

  • Choi, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.97-100
    • /
    • 2006
  • Dynamic crack propagation in ductile steel is investigated by means of impact loaded 3 point bending specimens. The specimen has the size of $320{\times}75\;mm$ with a thickness of 10 mm. One static and two dynamic experiments with impact velocities of 30.2 m/s and 45.2 m/s are carried out. High speed photography is used to obtain crack growth and crack tip opening displacement data. Direct measurement of the relative rotation of the two specimen halves is made by using Moire interference pattern. The experiments indicate no or only a slight influence of the loading rate on the crack propagation.

  • PDF

소형 펀치시험에 의한 강용접부의 파괴강도 평가에 관한 연구 2

  • 류대영;송기홍;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.56-67
    • /
    • 1989
  • In this study, the possibility of evaluating the peculiar fracture strength of weldment in high strength steels was investigated by means of a small punch(SP) test. In order to obtain the ductile-brittle transition temperature(DBTT) of SP energy by which the fracture strength of weldment in structural steels such as SS41 and SM53B steels had been evaluated in our preceding publication, the effects of notches and loading rates on SP energy were discussed. It was found that the correspondence of SP energy to critical COD at test temperature -196.deg. C showed a linear relation with some deviation. The empirical correlation with scatter band, Esp/(Esp)p = 1.67[.delta./(.delta./sub c//(.delta./sub c/)/sub p/]-0.55, was developed between the SP energy ratio and critical COD ratio of each weld structure compared with parent material at test temperature -196.deg. C. In addition, there did not appear to be a significant effect of test materials and specimen size etc. on the correlation.

  • PDF

Experimental Study for Fracture Characteristic of New Building Materials with Recycled Ash (석탄회 재활용 건설신소재 개발을 위한 파괴특성에 관한 실험적 연구)

  • Jo Byung-Wan;Park Jong-Bin;Keo Ja-Gab
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.255-261
    • /
    • 2005
  • Immense quantities of coal combustion by-products are produced every year, and only a small fraction of them are currently utilized. The purpose of this study is to investigate reused techniques of coal ash in the construction field, which may contribute to the savings of building materials and conservation of environment. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also, based on the three- point-bending test, the fracture parameters - notch sensitivity, fracture energy, and initial compliance were experimentally proposed. As a result, the strength and fracture characteristics were lower than those of concrete or mortar. Also, the study showed that the deflection at a fracture decreased as the age increased and as the notch depth rate decreased. However, it was judged that its use as a building material could be expected if further research is carried out.

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.

Lightweight Concrete Fracture Energy Derived by Inverse Analysis (역해석으로 도출된 경량콘크리트의 파괴에너지 특성 분석)

  • Lee, Kyeong-Bae;Kwon, Min-Ho;Seo, Hyun-Su;Kim, Jin-Sup;Cho, Jae-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.22-29
    • /
    • 2015
  • Modern structures is the tendency of being increasingly taller and larger. The concrete with large weight has the disadvantage of increasing the weight on the structure. therefore, the method of carrying out the weight saving of the concrete is required. one of such method is to use a lightweight aggregate. However, studies on structural lightweight concrete, lacking for the recognition of the lightweight concrete, so also is lacking. therefore it is necessary to study on the physical characteristic value of the lightweight concrete. In this study, in order to investigate the tensile properties of lightweight concrete, Crack mouth opening displacement (CMOD) experiments were carried out. the fracture energy of the lightweight concrete subjected to inverse analysis were derived from the CMOD experimental results.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.

Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending (휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Changbin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • The purpose of this paper is to investigate the flexural behavior of high-strength steel fiber-reinforced concrete beams with compressive strength of 130 MPa. The paper presents experimental research results of steel fiber-reinforced concrete beams with steel fiber content of 1.0% by volume and steel reinforcement ratio of less than 0.02. Both of normal-strength rebar and high-strength rebar were used in the test beams. Modeling as well as compressive and tensile strength test of high-strength steel fiber-reinforced concrete was performed to predict the bending strength of concrete beams. Tension modeling was performed by using inverse analysis in which load-crack mouth opening displacement relationship was considered. The experimental results show that high-strength steel fiber-reinforced concrete beams and the addition of high-strength rebar is in favor of cracking resistance and ductile behavior of beams. For beams reinforced with normal-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.81 to 1.42, whereas for beams reinforced with high-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.92 to 1.07. The comparison of bending strength from numerical analysis with the test results showed a reasonable agreement.

The Characteristic of Residual Stress and Fracture Toughness on The Welded Joint of HT50 by Laser Welding (50kg급 고장력강 레이저용접부의 용접잔류응력 및 파괴인성 특성)

  • Ro, Chan-Seung;Bang, Han-Sur;Ko, Min-Sung;Kim, Sung-Ju;Kim, Ha-Sig
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.93-96
    • /
    • 2003
  • Laser beam welding process is a relatively new process in comparison with arc welding process, but it is expected to apply widely because of the many advantages, and research and development of that process is being progressed actively for the practical use. the application of this welding process has been restricted due to the high initial investment and the need of precise processing against the material, but cost reduction and thick plate welding in high speed have become practial by recent technological development, and this welding process to not only small parts in automobile, machinery and physicochemical field, but also a large structure and pipe line are being applied. In order to utilize this welding process appropriately to a steel structure, the properties of welding residual stresses and fracture toughness in welded joints are to be investigated for relibilty. On this study, after performing the finite element analysis, thermal and residual stress properties have been examined to the general structural steel (HT50) by laser beam welding. Besides, the property of fracture toughness has been investigated by the Charpy impact test and 3-points bending CTOD test carried out in the range of temperature between $-60^{\circ}C$ and $20^{\circ}C$. From the research results it is revealed that the maximum residual stress appears in the center of plate thickness and the fracture toughness is influenced by strength mis-match.

  • PDF