• Title/Summary/Keyword: 규칙 찾기

Search Result 19, Processing Time 0.242 seconds

Advanced Association Rules using XML Document Clustering (XML 문서 클러스터링을 이용한 개선된 연관규칙)

  • 김의찬;이재민;황병연
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.181-183
    • /
    • 2004
  • 기존의 연관규칙을 생성하는 알고리즘의 문제점을 개선하기 위해 본 논문에서는 XML 문서 클러스터링을 이용하였다. XML 문서 클러스터링을 이용하여 데이터베이스 탐색 횟수 일 조인 개수를 줄여서 수행 속도를 향상시키고, 또한 클러스터링을 통해 얻은 클러스터에서 규칙을 찾기 때문에 기존의 연관규칙 생성 방법에서는 찾지 못했던 규칙들도 찾아낼 수 있다 본 논문에서 사용하는 클러스터링 방법은 XML문서 검색을 위한 3차원 비트맵 인덱싱인 xPlaneb를 사용하여 구현하였다.

  • PDF

Automatic Generation of Intrusion Detection Rules using Genetic Algorithms (유전자 알고리즘을 이용한 침입탐지 규칙의 자동생성)

  • 정현진;한상준;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.706-708
    • /
    • 2003
  • 침입탐지 시스템 중 하나인 오용탐지 시스템은 축적된 침입패턴 정보를 이용하기 때문에 새로운 침입에 대하여 새로운 정의가 필요하다. 이러한 문제점을 극복하여 새로운 침입에 대하여 일일이 정의하지 않고 자동으로 새로운 규칙을 생성하도록 하는 것이 좀 더 바람직하다. 본 논문에서는 새로운 규칙을 찾기 위한 방법으로 생물의 진화과정을 모델링한 유전자 알고리즘(GA)을 이용하였다. GA는 계산에 의존한 방법에 비하여 전역적인 해를 구할 때 더 효율적이다. GA를 이용하여 규칙을 자동 생성하고 침입을 탐지할 수 있는 규칙을 찾아가는 방식을 제안하였다. 실험 결과에서는 GA를 이용하여 자동 생성된 규칙으로 40~60%의 탐지율로 침입을 탐지할 수 있다는 것을 확인하였다.

  • PDF

빈발 패턴 네트워크에서 연관 규칙 발견을 위한 아이템 클러스터링

  • O, Gyeong-Jin;Jeong, Jin-Guk;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.321-328
    • /
    • 2007
  • 데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.

  • PDF

Generating Technology of the Association Rule for Analysis of Audit Data on Intrusion Detection (침입탐지 감사자료 분석을 위한 연관규칙 생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1011-1014
    • /
    • 2002
  • 최근 대규모 네트워크 데이터에 대한 패턴을 분석하기 위한 연구에 대하여 관심을 가지고 침입탐지 시스템을 개선하기 위해 노력하고 있다. 특히, 이러한 광범위한 네트워크 데이터 중에서 침입을 목적으로 하는 데이터에 대한 탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 그 다음에 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 빠르게 인지하는 적용기술을 제안하고자 한다. 침입 패턴인식을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였으며, 생성된 새로운 규칙과 학습된 자료를 바탕으로 침입탐지 모델을 제안하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하여 규칙을 생성한 사례를 보고한다. 또한, 추출 분석된 자료는 리눅스 기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 분석하여 제안한 방법에 따라 적용한 산출물이다.

  • PDF

Discovering and Matching Elastic Rules in Sequence Databases (시퀀스 데이터베이스에서 유연 규칙의 탐사 및 매칭)

  • ;Wesley Chu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7A
    • /
    • pp.1162-1169
    • /
    • 2001
  • 유연 패턴은 시간 축으로 확장 및 수축할 수 있는 요소들의 순서화된 리스트이다. 유연 패턴은 서로 다른 샘플링 비율을 갖는 데이터 시퀀스들로부터 규칙들을 찾아내는데 유용하게 사용된다. 본 연구에서는 헤드(head: 규칙의 왼쪽 부분)와 바디(body: 규칙의 오른쪽 부분)가 모두 유연 패턴으로 구성된 규칙들을 신속하게 찾도록 하기 위하여 데이터 시퀀스로부터 서픽스 트리(suffix tree)를 구성한다. 이 서픽스 트리는 유연 규칙들의 압축된 표현이며, 타깃 헤드 시퀀스와 매치되는 규칙을 찾기 위한 인덱스 구조로서 사용된다. 만일, 매치되는 규칙을 찾을 수 없는 경우에는 규칙 완화(rule relaxation)의 개념을 이용한다. 클러스터 계층(cluster hierarchy)과 완화 오차(relaxation error)를 사용하여 타깃 헤드 시퀀스의 고유한 정보를 대부분 포함하고 있는 최소한으로 완화된 규칙을 찾는다. 다양한 실험을 통한 성능 평가를 통하여 제안한 기법의 우수성을 검증한다.

  • PDF

Identifiers Recognition of Container Image using Enhanced Neural Networks (개선된 신경망을 이용한 컨테이너 식별자 인식)

  • Yoon Kyeong-Ho;Jun Tae-Ryong;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.291-296
    • /
    • 2006
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 환경으로 인한 식별자의 형태가 훼손되어 있기 때문에 일정한 규칙으로는 찾기 힘들다. 본 논문에서는 컨테이너 영상에 대해 ART2 알고리즘을 적용하여 컨테이너 영상을 양자화한다. 제안된 ART2 알고리즘 기반 양자화 기법은 컬러정보를 클러스터링 한 후, 각 클러스터의 중심 패턴을 이용하여 원 영상의 컬러정보를 분류한다. 양자화된 컨테이너 영상에서 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자는 ART2 기반 RBF 네트워크를 개선하여 인식에 적용한다. 실제 컨테이너 영상 300장에 대해 실험한 결과, 제안한 컨테이너 식별자 인식 방법의 추출 및 인식 성능이 기존의 컨테이너 식별자 인식 방법 보다 개선된 것을 확인하였다.

  • PDF

초등수학에서의 수학적 패턴 지도

  • 김상미;신인선
    • Education of Primary School Mathematics
    • /
    • v.1 no.1
    • /
    • pp.3-22
    • /
    • 1997
  • 본 연구는 첫째로는 수학교육에서 패턴이 강조되는 이론적 근거를 찾고자 역사적 맥락에서 수학의 성격변화를 탐색하였다. 수학의 성격 변화를 통하여 수학은 수의 탐구, 기하의 탐구, 운동ㆍ변화ㆍ공간의 탐구, 수학 연구의 도구에 대한 탐구로 그 영역을 점차 확대하여 왔으며, '수학은 패턴의 과학이다'라는 정의는 수학이 폭넓어짐에 따라 수학이 무엇인가에 대한 수학의 본성에 접근하는 논의라고 할 수 있다. 이러한 수학에 대한 새로운 관점은 수학교육의 새로운 방향 모색에 시사하는 바를 살펴보고, 특히 수학교실의 변화에 따른 패턴의 강조를 살펴보았다. 둘째로는 수학적 패턴을 밝힘과 동시에 수학 교육에서 수학적 패턴 분석의 틀을 마련하고자 수학적 패턴의 유형화를 시도하였다. 패턴의 속성에 따른 유형화와 패턴의 생성 방식에 따른 유형화를 통하여 수학적 패턴의 유형을 마련하였다. 초등학교 수학에서 다루어지는 패턴은 어떠한 것인가를 현행 4학년 수학교과서 및 익힘책에 제한하여 유형화한 틀로서 조사 분석하였다. 셋째로는 수학적 패턴에 관한 지도 방안의 모색으로서, 지도의 기본 방향을 설정하고 수학적 패턴에 관한 교수 전략을 마련하였다. 교수전략은 크게 패턴에서의 규칙 찾기, 패턴을 변형ㆍ확장하기, 자신의 새로운 패턴 만들기, 패턴을 수학적으로 설명하기로 나누고, 각각에 3-4개의 세부 전략과 세부 전략에 따른 예를 제시하였다.

  • PDF

Matching of Elastic Rules in Sequence Databases (시퀀스 데이터베이스를 위한 유연 규칙 매칭)

  • Park, Sang-Hyun;Chu, Wesley W.;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.57-60
    • /
    • 2001
  • 본 논문에서는 유연 패턴(elastic pattern)을 갖는 규칙(rule)을 탐사하고 매칭하는 기법에 대해 논의한다. 유연 패턴은 시간 축으로 확장 및 수축할 수 있는 요소들의 순서화된 리스트이다. 유연 패턴은 서로 다른 샘플링 비율을 갖는 데이터 시퀀스들로부터 규칙들을 찾아내는데 유용하게 사용된다. 본 연구에서는 헤드(head: 규칙의 왼쪽 부분)와 바디(body: 규칙의 오른쪽 부분)가 모두 유연 패턴으로 구성된 규칙들을 신속하게 찾도록 하기 위하여 데이터 시퀀스로부터 서픽스 트리(suffix tree)를 구성한다. 이 서픽스 트리는 유연 규칙들의 압축된 표현이며, 타깃 헤드 시퀀스와 매치되는 규칙을 찾기 위한 인덱스 구조로서 사용된다. 만일, 매치되는 규칙을 찾을 수 없는 경우에는 규칙 완화(rule relaxation)의 개념을 이용한다. 클러스터 계층(cluster hierarchy)과 완화 오차(relaxation error)를 사용하여 타깃 헤드 시퀀스의 고유한 정보를 대부분 포함하고 있는 최소한으로 완화된 규칙을 찾는다. 다양한 실험을 통한 성능 평가를 통하여 제안한 기법의 우수성을 검증한다.

  • PDF

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

Finding negative association rules with Boolean Analyzer (Boolean Analyzer를 이용한 역 연관규칙의 발견)

  • Lee, Jong-In;Park, Sang-Ho;Kang, Yun-Hee;Park, Sun;Lee, Ju-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.187-189
    • /
    • 2003
  • 연관 규칙이 구매한 항목에 관심을 가져 구매 항목간의 규칙을 생성하는 것이라면 역 연관규칙은 구매하지 않은 항목에도 관심을 가짐으로써 더욱 효과적으로 데이터 마이닝을 하려는 시도이다. 역 연관규칙을 찾기 위한 기존의 방법들은 규칙의 일부분만 찾거나. 연관규칙을 찾는 알고리즘보다 더 복잡한 알고리즘의 사용으로 역 연관규칙을 찾는데 어려움이 있다. 이에 본 논문에서는 ITEM들 사이의 dependency를 이용하는 Boolean Analyzer를 사용하여 보다 간단한 과정으로 역 연관규칙을 생성하는 방법을 제시하고, 실험을 통하여 Boolean Analyzer로 역 연관규칙을 찾고 다른 알고리즘과 비교를 통해 보다 다양한 규칙을 찾을 수 있음을 보여준다.

  • PDF