• Title/Summary/Keyword: 규칙정확도

검색결과 289건 처리시간 0.021초

GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용 (Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process)

  • 오성권;황형수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.96-105
    • /
    • 1997
  • 본 논문에서는 복잡한 비선형 시스템의 모델동정을 위해 퍼지모델링의 새로운 방법이 제안된다. 제안된 FPNN모델링은 공정시스템의 입출력 데이터로부터 GMDH방법과 퍼지구현규칙을 이용하여 시스템의 구조와 파라미터 동정을 구현한다. 퍼지구현규칙의 전반부 구조와 파라미터 동정을 위하여 GMDH 방법과 희귀다항식 퍼지추론 방법이 사용되고 최적 후반부 파라미터 동정을 위하여 최소자승법이 사용된다. 가스로 시계열데이타 및 하수처리시스템의 활성화의 공정 데이터가 제안한 FPNN 모델링의 성능을 평가하기 위해 상용된다. 제안된 방법이 기존의 다른 논문과 비교하여 더 높은 정확도를 가진 지능형 모델을 생성함을 보인다.

  • PDF

T-S Fuzzy Identification을 이용한 유도전동기 구현에 관한 연구 (The study on Induction motor of 'T-S Fuzzy Identification')

  • 이승택;이동광;안호균;박승규;안종건;윤태성;곽군평
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.973-981
    • /
    • 2012
  • 본 논문에서는 비선형 시스템에 대하여 Takagi-sugeno(T-S) 퍼지 Identification을 이용하여 유도전동기의 비선형 다변수 시스템을 선형화 할 수 있는 새로운 방법을 제안한다. T-S 퍼지 모델의 선형화는 퍼지 규칙들 및 소속 함수들의 산술적인 계산으로 인해 선형화가 쉽지 않다. 그러므로 T-S 퍼지 Identification을 이용하여 퍼지 규칙 및 소속함수들의 추정을 통해 높은 정확도를 가지는 선형 모델로 제공한다.

사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법 (Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service)

  • 문종혁;최종선;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 2020
  • 다양한 분야에서 활용되는 상황인지 시스템은 상황정보를 획득하기 위한 추상화 과정에서 규칙 기반의 인공기능 기술이 기존에 사용되었다. 그러나 서비스에 대한 사용자의 요구사항이 다양해지고 사용되는 데이터의 증대로 규칙이 복잡해지면서 규칙 기반 모델의 유지보수와 비정형 데이터를 처리하는데 어려움이 있다. 이러한 한계점을 극복하기 위해 많은 연구들에서는 상황인지 시스템에 기계학습 기술을 적용하였으며, 이러한 기계학습 기반의 모델을 상황인지 시스템에 사용하기 위해서는 주기적으로 학습 데이터를 제공해야 한다. 이에 기계학습 기반 상황인지 시스템에 대한 선행연구에서는 여러 개의 기계학습 모델을 적용하기 위한 학습 데이터 생성, 제공 등의 과정을 보였으나 제한된 종류의 기계학습 모델만을 적용 가능하여 확장성이 고려되어야 한다. 본 논문은 기계학습 기반의 상황인지 시스템의 확장성을 고려한 기계학습 모델의 학습 데이터 생성 방법을 제안한다. 제안하는 방법은 시스템의 확장성을 고려하여 기계학습 모델의 요구사항을 반영할 수 있는 학습 데이터 생성 모델을 정의하고 학습 데이터 생성 모듈을 바탕으로 각각의 기계학습 모델의 학습 데이터를 생성하는 것이다. 시스템의 확장성의 검증을 위해 실험에서는 노인의 건강상태 알림 서비스를 위한 심박상태 분석 모델을 대상으로 한 학습데이터 생성 스키마를 기반으로 학습데이터 생성 모델을 정의하고 실환경에서 정의된 모델을 S/W에 적용하여 학습데이터를 생성한다. 또한 생성된 학습데이터의 유효성을 검증하기 위해 사용되는 기계학습 모델에 생성한 학습데이터를 학습시켜 정확도를 비교하는 과정을 보인다.

온톨로지 기반의 웹 페이지 분류 시스템 (Web Page Classification System based upon Ontology)

  • 최재혁;서혜성;노상욱;최경희;정기현
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.723-734
    • /
    • 2004
  • 본 논문은 온톨로지(ontology)에 기반 한 자동화된 웹 페이지 분류 시스템을 제안한다. 웹 페이지의 분류를 위하여 첫 번째 단계에서는 각 웹 페이지가 속한 범주(category)를 대표할 수 있는 단어를 선정하며, 이를 위하여 단어빈도와 문서빈도를 곱한 값을 계산한다. 두 번째 단계에서는 첫 번째 단계에 의해 선택된 단어의 정보이득(information gain)을 계산해 분류 확률이 높은 단어를 우선적으로 선정한다. 두 단계를 통하여 선정된 단어들과 웹 페이지의 분류 정보를 가지고, 기계학습에 의하여 컴파일 된 규칙(compiled rules)을 생성한다. 생성된 규칙은 임의의 웹 페이지들을 도메인 온톨로지에 의해 정의된 범주 별로 분류할 수 있도록 한다. 본 논문의 실험에서는 주어진 웹 페이지 집합에서 각 범주 별로 평균 240개의 단어로부터 78개의 단어를 결과적으로 선정하였으며, 이를 바탕으로 웹 페이지 분류 규칙을 생성하였다. 실험 결과에서 제안한 시스템의 평균 분류 정확도는 약 83.52%로 측정되었다.

제품 설명서에 나타나는 중의적 명사 수식 구문 연구 - 통제 언어의 관점에서- (A study on the ambiguous adnominal constructions in product documentation)

  • 박아름;지은별;홍문표
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.23-28
    • /
    • 2012
  • 번역을 지원하는 도구로 자동 번역 시스템을 효율적으로 활용하기 위해 중요한 것은 자동 번역에 적합하도록 원문을 작성하거나 이미 작성된 원문에 대한 전처리 작업을 하는 것이다. 본 연구의 궁극적인 목표는 제품 설명서 작성자가 통제언어 체커를 통해 통제언어 규칙들을 적용하여 원문을 작성하도록 하는 것이다. 본 논문은 그 중간 단계로써 제품 설명서에 나타나는 문제 사항이 번역 품질에 어떠한 영향을 미치는지 밝혀내는 것을 목적으로 한다. 연구 대상은 제품 설명서에서 자동 번역의 성능을 저해시키는 요소 중 중의적 명사 수식 구문이다. 이러한 명사 수식 구문들은 분석 단계에서 구조적인 모호성을 초래하여 한국어 분석의 정확도를 떨어뜨리기 때문에 결과적으로 번역 품질을 악화시킬 수 있다. 이를 검증하기 위해 우선 제품 설명서 데이터를 분석하여 자동 번역 결과에 부정적인 영향을 미치는 명사 수식 구문을 다음과 같이 4가지로 유형화 하였다. (유형 1) 관형격 명사구 + 명사 병렬 접속, (유형 2) 동사의 관형형이 수식하는 명사구 + 명사 병렬 접속, (유형 3) 관형격 조사 '의' 중복, (유형 4) 병렬 접속어를 잘못 쓴 경우, 각각의 유형에 대해서 한국어 분석 단계에서 발생할 수 있는 문제에 대해 설명하였으며, 문제 사항에 대해 통제언어 규칙을 제시하였다. 통제언어 규칙에 따라 중의적 명사 수식 구문을 수정한 결과, 한국어 원문의 번역결과보다 한국어 수정문의 번역결과가 작성자의 의도를 더 잘 나타낸다는 것을 확인할 수 있었다.

  • PDF

임베디드 시스템에 적합한 한국어 복합명사 분해 (Korean Compound Nouns Decomposition Suitable for Embedded Systems)

  • 최민석;김창현;천민아;박호민;남궁영;윤호;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.316-320
    • /
    • 2018
  • 복합명사는 둘 이상의 말이 결합된 명사를 말하며 문장에서 하나의 단어로 간주된다, 그러나 맞춤법 및 띄어쓰기 검사나 정보검색의 색인어 추출, 기계번역의 미등록어 추정 등의 분야에서는 복합명사를 구성하는 개별 단어를 확인할 필요가 있다. 이 과정을 복합명사 분해라고 한다. 복합명사를 분해하는 방법으로 크게 규칙 기반 방법, 통계 기반 방법 등이 있으며 본 논문에서는 규칙을 기반으로 최소한의 통계 정보를 이용하는 방법을 제안한다. 본 논문은 4개의 분해 규칙을 적용하여 분해 후보를 생성하고 분해 후보들 중에 우선순위를 정하여 최적 후보를 선택하는 방법을 제안한다. 기본 단어(명사)로 트라이(trie)를 구축하고 구축된 트라이를 이용하여 양방향 최장일치를 적용하고 음절 쌍의 통계정보를 이용해서 모호성을 제거한다. 성능을 평가하기 위해 70,000여 개의 명사 사전과 음절 쌍 통계정보를 구축하였고, 이를 바탕으로 복합명사를 분해하였으며, 분해 정확도는 단어 구성비를 반영하면 96.63%이다. 제안된 복합명사 분해 방법은 최소한의 데이터를 이용하여 복합명사 분해를 수행하였으며 트라이 자료구조를 사용해서 사전의 크기를 줄이고 사전의 검색 속도를 개선하였다. 그 결과로 임베디드 시스템과 같은 소형 기기의 환경에 적합한 복합명사 분해 시스템을 구현할 수 있었다.

  • PDF

헬스 빅데이터 플랫폼에서 이기종 라이프로그 마이닝 모델 (Heterogeneous Lifelog Mining Model in Health Big-data Platform)

  • 강지수;정경용
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.75-80
    • /
    • 2018
  • 본 논문에서는 헬스 빅데이터 플랫폼에서 이기종 라이프로그 마이닝 모델을 제안한다. 이는 사용자의 라이프 로그를 실시간으로 수집하고 헬스케어 서비스를 제공하기 위한 온톨로지 기반의 마이닝 모델이다. 제안하는 방법은 이기종 라이프 로그 데이터를 분산처리하고, 클라우드 컴퓨팅 환경에서 실시간으로 처리한다. 이를 이기종 온톨로지를 기반으로 구성한 환경에 적합하도록 상위 온톨로지 방식으로 지식베이스를 재구성한다. 재구성한 지식베이스는 Jena 4.0 추론엔진을 이용해 추론 규칙들을 생성하고, 규칙 기반 추론 방법으로 실시간 헬스 서비스를 제공한다. 라이프로그 마이닝을 숨겨진 관계에 대한 분석과 시계열적 생체신호에 대한 예측모델을 구성한다. 이는 관계나 추론규칙에서 포함되지 않은 음의 상관관계나 양의 상관관계를 탐색하여 사용자의 생체신호에 대한 변화를 감지하고 예방 의료 서비스를 현실화하는 실시간 헬스케어 서비스가 가능하다. 성능 평가는 제안한 이기종 라이프로그 마이닝 모델 방법이 정확도에서 0.734, 재현율에서 0.752로 다른 모델에 비해 우수하게 나타난다.

Semi-submersible 석유시추선(石油試錐船)(부체해양구조물(浮體海洋構造物))의 운동(運動) -계산방법(計算方法), 해석(解析) 및 응용(應用) (Motions of Semi-submersible Drilling Rigs in Deep Water)

  • 정진수
    • 대한조선학회지
    • /
    • 제11권2호
    • /
    • pp.23-40
    • /
    • 1974
  • Semisubmersible 해양석유시추선의 기본설계에 필요한 파랑중(波浪中)에서 운동(運動)을 계산(計算)하는 이론적방법(理論的方法)을 제시하고 "MOHOLE"과 "SEDCO 1350-F" 석유시추선들의 운동(運動)을 해석하였다. 이 규칙파에서 운동계산을 불규칙해양파(波)에 적용하는 응용해석을 보여주었다. 현재 이론적 방법으로는 6자유도(自由度)의 운동을 해양파의 어떤 방향에 대해서도 정확히 계산할 수 있으며 계산의 정확성은 수조(水槽)에서의 모형선의 운동측정치와 실선(實船)의 운동측정치와 비교하여 증명되었다. 또 현재의 방법은 종전에 개발된 방법보다 더 일반적(一般的)인 경우를 다룰 수 있으며 결과치도 더 정확하다. 극소운동특성을 갖는 해양석유시추선과 부체(浮體)해양구조물의 설계는 경비가 비싸고 시간이 많이 드는 모형실험보다는 유체역학적(流體力學的) Parameters를 신속 정확히 자주 변경 검토해야 하는 기본설계단계에서는 정확한 이론적인 전자계산기에 의한 계산방법이 절실히 필요하다. 예상(豫想)과 같은 부가질량(附加質量)과 감쇠력(減衰力)은 Resonance 운동주기에서만 운동에 영향을 준다. 해양구조물에 작용하는 파력(波力)은 Froude-Krilov force, 부가질량(附加質量) 및 감쇠력(減衰力)과 Restoring force로 구성했으며 규칙파(規則波)에서의 6자유도(自由度) 운동방정식은 본 논문에 제시된 실험측정치(値)와 실험으로 정확도가 증명된 이론치(値)의 부가질량과 감쇠력 계수(係數)를 써서 풀었다. 규칙파(規則波)에서의 계산된 운동을 Pierson Moskowitz 해양파(海洋波) 스펙트럼과 linear superposition principle에 의해 불규칙해양파(不規則海洋波)에서의 운동을 계산하는데 사용했다. 불규칙파(不規則波)에서의 운동은 운동스펙트럼과 통계적 운동치로 나타냈다. 현재의 계산방법은 실제 기본설게에 사용되어 왔으며, 다른 응용분야는 파랑중(波浪中)에서의 파면(波面)과 Deck간(間)의 Clearance, 계류선(係留線)의 동장력(動張力)계산의 기본 Data 및 기본설계의 Draft 등 Parameters를 통(通)한 Optimum Design 등(等)이다. 파(波)의 한 방향(方向)에 대(對)한 전자계산기(電子計算機)(IBM 370 또는 CDC 6400)에 의한 운동계산은 10초(秒)미만밖에 안걸린다. 또 현재의 계산방법은 해양석유시추선뿐 아니라 이와 비슷한 부체(浮體)해양구조물과 Pipe-laying선(船) 또 Supply Boat설계(設計)에도 쓰여지고 있다.

  • PDF

RFM기반 FP-tree 마이닝을 이용한 개인화 추천시스템 (Personalized Recommendation System using FP-tree Mining based on RFM)

  • 조영성;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.197-206
    • /
    • 2012
  • 기존의 연관규칙을 이용한 추천시스템은 매번 계속적으로 대량의 데이터를 스캔해야 하므로 속도가 느릴 뿐 아니라 확장성 문제와 정확도 문제가 있다. 본 논문에서는 사용자의 평가 자료에 의존하지 않고 묵시적인(Implicit)방법을 이용하여 RFM(Recency, Frequency, Monetary)기반 FP-tree 마이닝을 이용한 개인화 추천시스템을 제안한다. 구매 가능성이 높은 아이템을 찾기 위해서 고객정보와 구매이력정보를 기반으로 고객과 아이템의 속성 반영이 가능한 RFM기법과 FP-tree 마이닝을 이용한다. 제안 방법으로 RFM기반의 FP-tree 마이닝을 이용하여 후보집합의 발생없이 빈발항목을 구성하고 연관규칙을 생성한다. 생성된 연관규칙의 지지도, 신뢰도, 향상도를 사용하여 추천 효율성이 높은 아이템 추천이 가능하다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존의 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.

U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가 (Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN)

  • 유지윤;윤대웅
    • 지구물리와물리탐사
    • /
    • 제25권3호
    • /
    • pp.140-161
    • /
    • 2022
  • 탄성파 탐사 자료 획득 시 자료의 일부가 손실되는 문제가 발생할 수 있으며 이를 위해 자료 보간이 필수적으로 수행된다. 최근 기계학습 기반 탄성파 자료 보간법 연구가 활발히 진행되고 있으며, 특히 영상처리 분야에서 이미지 초해상화에 활용되고 있는 CNN (Convolutional Neural Network) 기반 알고리즘과 GAN (Generative Adversarial Network) 기반 알고리즘이 탄성파 탐사 자료 보간법으로도 활용되고 있다. 본 연구에서는 손실된 탄성파 탐사 자료를 높은 정확도로 복구하는 보간법을 찾기 위해 CNN 기반 알고리즘인 U-Net과 GAN 기반 알고리즘인 cWGAN (conditional Wasserstein Generative Adversarial Network)을 탄성파 탐사 자료 보간 모델로 사용하여 성능 평가 및 결과 비교를 진행하였다. 이때 예측 과정을 Case I과 Case II로 나누어 모델 학습 및 성능 평가를 진행하였다. Case I에서는 규칙적으로 50% 트레이스가 손실된 자료만을 사용하여 모델을 학습하였고, 생성된 모델을 규칙/불규칙 및 샘플링 비율의 조합으로 구성된 총 6가지 테스트 자료 세트에 적용하여 모델 성능을 평가하였다. Case II에서는 6가지 테스트 자료와 동일한 형식으로 샘플링된 자료를 이용하여 해당 자료별 모델을 생성하였고, 이를 Case I과 동일한 테스트 자료 세트에 적용하여 결과를 비교하였다. 결과적으로 cWGAN이 U-Net에 비해 높은 정확도의 예측 성능을 보였으며, 정량적 평가지수인 PSNR과 SSIM에서도 cWGAN이 높은 값이 나타나는 것을 확인하였다. 하지만 cWGAN의 경우 예측 결과에서 추가적인 잡음이 생성되었으며, 잡음을 제거하고 정확도를 개선하기 위해 앙상블 작업을 수행하였다. Case II에서 생성된 cWGAN 모델들을 이용하여 앙상블을 수행한 결과, 성공적으로 잡음이 제거되었으며 PSNR과 SSIM 또한 기존의 개별 모델 보다 향상된 결과를 나타내었다.