• 제목/요약/키워드: 규칙정확도

검색결과 289건 처리시간 0.025초

상대적 규칙 정확도의 균형화에 의한 연관성 측도의 개발 (Development of association rule threshold by balancing of relative rule accuracy)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1345-1352
    • /
    • 2014
  • 데이터마이닝 기법 중에서 연관성 규칙은 연관성 평가 기준을 기반으로 하여 데이터베이스에 포함되어 있는 항목들 간의 관련성을 탐색하는 기법이다. 일반적인 연관성 규칙 기법과는 달리 역의 연관성 규칙은 하나의 항목집합이 발생하지 않으면 다른 항목집합도 발생하지 않는다는 규칙을 찾아내는 것이다. 이러한 역의 연관성 규칙을 일반적인 연관성 규칙과 함께 생성하면 기업체에서 특정 제품을 판매하기 위해서는 그 제품만의 마케팅뿐만 아니라 더 나아가 어떤 제품의 마케팅이 필요한 지에 대한 정보를 파악할 수 있다. 이를 위해 본 논문에서는 이러한 두 종류의 연관성 규칙에 적용 가능한 균형화된 기여 상대적 규칙 정확도를 연관성 평가 기준으로 제안하고자 한다. 또한 Piatetsky-Shapiro (1991)가 제안한 흥미도 측도가 가져야 할 조건들을 점검한 후, 예제를 통하여 제안된 측도와 연관성 규칙에 적용 가능한 의학진단분야의 평가 측도들의 유용성을 비교하였다. 그 결과, 기여 상대적 정확도와 역의 기여 상대적 정확도의 크기가 다르게 나타나면 연관성의 정도를 명확하게 설명하기가 어려우므로 이들 두 측도를 동시에 고려한 균형화된 기여 상대적 규칙 정확도를 이용하는 것이 가장 바람직하다는 사실을 확인하였다.

통계적 결정 그래프 학습 방법을 이용한 한국어 품사 부착 오류 수정 (Korean Part-of-Speech Tagging Error Correction Method Based on Statistical Decision Graph Learning)

  • 류원호;이상주;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.123-129
    • /
    • 2001
  • 지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.

  • PDF

언어 지식과 통계 정보의 보완적 특성을 이용한 품사 태깅 (Part-of-Speech Tagging Using Complemental Characteristics of Linguistic Knowledge and Stochastic Information)

  • 임희석;김진동;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.102-108
    • /
    • 1997
  • 기존의 품사 태깅 방법에서 독립적으로 사용해온 언어 지식과 통계 정보는 품사 태깅의 정확도와 처리 범위의 향상을 위해서 상호 보완적인 특성을 갖는다. 이에 본 논문은 언어 지식과 통계 정보의 보완적 특성을 이용한 규칙 우선 직렬 품사 태깅 방법을 제안한다. 제안된 방법은 언어 지식에 의한 품사 태깅 결과를 선호함으로써 규칙 기반 품사 태깅의 정확도를 유지하며, 언어 지식에 의해서 모호성이 해소되지 않은 어절에 통계 정보에 의한 품사 태깅 결과를 할당함으로써 통계 기반 품사 태깅의 처리 범위를 유지한다. 또한, 수정 언어 지식에 의해 태깅 결과의 오류를 보정함으로써 품사 태깅의 정확도를 향상시킨다. 약 2만 어절 크기의 외부 평가 코퍼스에 대해 수행된 실험 결과, 규칙 우선 직렬 품사 태깅 시스템은 통계 정보만을 이용한 품사 태깅의 정확도보다 32.70% 향상된 95.43%의 정확도를 보였다.

  • PDF

신경망에 기반한 개인화 기술 (A Personalization Technology Based on Neural Networks)

  • 김종수;도영아;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.28-30
    • /
    • 2001
  • 현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

  • PDF

변형 규칙 기반 한국어 품사 태거의 개선 (Improvement of Transformation Rule-Based Korean Part-Of-Speech Tagger)

  • 임희석;김진동;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.216-221
    • /
    • 1996
  • 변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.

  • PDF

규칙의 일반화와 통계 방식을 결합한 한국어 문맥의존 철자오류 교정규칙의 재현율 향상 (Improving Recall for Context-Sensitive Spelling Correction Rules by Combining Rule-Generalization and Statistical Method)

  • 최현수;권혁철;윤애선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.18-23
    • /
    • 2014
  • 한국어 맞춤법 검사기는 전자화된 한국어 텍스트에 나타난 오류어를 검색하여 이를 교정할 대치어를 제시하는 시스템이다. 이때 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 정확하지만, 문맥을 고려하였을 때 오류가 되는 유형으로 교정 난도가 매우 높다. 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉜다. 이때 규칙을 이용한 방법은 그 특성상 정확도가 매우 높지만, 반대로 재현율이 매우 낮다. 본 논문에서는 본 연구진이 기존에 연구하였던 규칙을 일반화하는 방식에 추가로 조건부 확률을 이용한 통계 방식을 결합하여 정확도를 유지하면서 재현율을 향상시키는 방법을 제안한다.

  • PDF

MATES/CK 중한기계번역시스템의 구문분석규칙 (Parsing Rules for MATES/CK)

  • 송영미;강원석;김지현;송희정;황금하;최기선
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.337-342
    • /
    • 2000
  • 중한기계번역시스템(MATES/CK)의 구문분석은 1120개의 구문분석규칙과 통계적 정보에 의한 확률기반에 따라 그 문장에 가장 적합한 구문트리를 찾아져 적용되는 방식으로 이루어지고 있다. 기존 구문분석 규칙은 자체에 오류가 많고, 새로운 규칙의 생성도 필요하다. 규칙에 대한 제약조건에도 좀 더 구체적이고 정확성을 높일 수 있는 상태로의 전환이 필요하다. 본 논문에서는 중한기계번역시스템(MATES/CK)의 구문분석의 정확도를 높이기 위하여 구문분석규칙을 수정하는 방법에 관하여 알아보고 그 연구과정을 살펴본다.

  • PDF

Neural Feature Association Rule을 이용한 효모 단백질-단백질 상호작용의 예측 (Prediction of Yeast Protein-Protein Interactions by Neural Feature Association Rule)

  • 엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.277-279
    • /
    • 2005
  • 단백질들은 서로 다른 단백질들과 상호작용하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질들 간의 상호작용 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이터가 산출된 후게놈시대(post-genomic era)에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터들에서 속성들 간의 연관규칙 학습을 통해 잠재적 단백질 상호작용들을 예측하기 위한 연관규칙 기반의 상호작용 예측 방법을 제시한다. 단백질들 간의 상호작용 예측을 위해 고려되는 각 단백질의 다수의 속성차원은 정보이론 기반의 속성선택 알고리즘을 이용하여 효율적으로 줄이며 상호작용의 속성집합을 이용하여 신경망을 훈련시키고 이렇게 훈련된 신경망에서 속성들 간의 연관규칙을 디코딩하여 연관규칙 기반의 상호작용 예측에 활용한다. 연관속성 발굴을 통한 상호작용 예측을 위한 마이닝 방법으로는 연관규칙 발견 알고리즘을 사용하였으며 예측 정확도를 높이기 위하여 신경망 예측 모델의 학습 결과를 디코딩한 규칙들이 추가적으로 사용하였다. 논문에서 제안한 방법을 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 평균 약 $94.5\%$의 예측 정확도를 보였다.

  • PDF

복수 샘플링과 트리밍을 통한 고품질 연관규칙 추출법 (Improved Association Rule Mining by Multiple Sampling & Trimming)

  • 황원태;김동승
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.919-921
    • /
    • 2005
  • 본 논문은 전체 데이터베이스에서 일부 추출된 샘플 데이터에서 빈발항목 집합을 찾는 연관규칙 마이닝 알고리즘을 기술한다. 샘플링기술을 이용하면 마이닝과정에서 필요한 데이터베이스의 접근 양을 줄이므로써 실행시간을 단축시킬 수 있다는 장점이 있지만, 전체데이터베이스를 이용한 마이닝보다 정확도가 떨어진다는 단점이 함께 존재한다. 이전의 Chen의 FAST알고리즘은 샘플링을 이용한 마이닝과정에서 거리오차함수를 이용한 트리밍과정을 통해 빈발 1항목집합에 대한 정확도를 개선시켰다. 이후 IFAST 알고리즘은 트리밍과정에서 빈발2-항목집합까지 고려하여 빈발2-항목집합 이상의 빈발항목집합에서도 정확도를 개선시켰다. 본 논문에서는 트리밍과정에서 사용될 추정데이터를 여러 개의 샘플데이터를 이용하여 얻으므로써 오류항목집합(false itemset)의 수를 줄이고 전체적인 정확도를 향상시키는 새로운 알고리즘을 소개한다.

  • PDF

IOPI를 활용한 조음기관 훈련 프로그램이 경직형 마비말장애의 조음 능력에 미치는 영향 (Effect of Articulation Abilities on the Articulator Strength Training by IOPI of Spasticity Dysarthric Speech)

  • 이장신;이지윤;김선희
    • 재활치료과학
    • /
    • 제9권1호
    • /
    • pp.91-99
    • /
    • 2020
  • 목적 : 본 연구의 목적은 IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음기관(혀, 입술) 근력 상승, 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화에 끼치는 효과에 대해 연구하고자 하였다. 연구 방법 : 본 연구는 제주에 거주하는 경직형 마비말장애 환자 3명을 대상으로 제주 소재의 대학병원 언어치료실에서 기초선 단계, 7주간 주3회씩 1회기당 30분씩 중재를 한 후에 사후 평가를 실시하여 혀와 입술의 근력, SMST 조음선별검사 중 /ㄹ, ㅅ, ㅈ/ 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화를 연구하는 단일대상연구를 실시하였다. 결과 : IOPI 조음 근력 강화 훈련 프로그램을 경직형 마비말장애 환자들에게 실시한 이후에 조음기관 근력, /ㄹ, ㅅ, ㅈ/ 조음동안 정조음 산출 수, 조음 교대운동 검사 결과 초당 /퍼/, /터/, /커/, /러/, /긍/, /아/, /퍼터커/ 산출 횟수의 증가와 조음 규칙성과 조음 규칙성 및 정확성에서 긍정적인 변화가 나타났다. 결론 : 본 연구 결과, IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 향상을 도모하였으며, 추후 IOPI를 다양한 하위 유형의 마비말장애 환자에게 실시하여 각 하위 유형 간 차이를 비교하고, 마비말장애의 가장 대표적인 뇌성마비 아동들에게 가정에서 IOPI를 활용한 조음기관 기능 훈련을 연계한 프로그램 적용 이후 조음 능력의 변화에 대해 연구한다면 매우 유용할 것으로 사료된다.