Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1345-1352
/
2014
데이터마이닝 기법 중에서 연관성 규칙은 연관성 평가 기준을 기반으로 하여 데이터베이스에 포함되어 있는 항목들 간의 관련성을 탐색하는 기법이다. 일반적인 연관성 규칙 기법과는 달리 역의 연관성 규칙은 하나의 항목집합이 발생하지 않으면 다른 항목집합도 발생하지 않는다는 규칙을 찾아내는 것이다. 이러한 역의 연관성 규칙을 일반적인 연관성 규칙과 함께 생성하면 기업체에서 특정 제품을 판매하기 위해서는 그 제품만의 마케팅뿐만 아니라 더 나아가 어떤 제품의 마케팅이 필요한 지에 대한 정보를 파악할 수 있다. 이를 위해 본 논문에서는 이러한 두 종류의 연관성 규칙에 적용 가능한 균형화된 기여 상대적 규칙 정확도를 연관성 평가 기준으로 제안하고자 한다. 또한 Piatetsky-Shapiro (1991)가 제안한 흥미도 측도가 가져야 할 조건들을 점검한 후, 예제를 통하여 제안된 측도와 연관성 규칙에 적용 가능한 의학진단분야의 평가 측도들의 유용성을 비교하였다. 그 결과, 기여 상대적 정확도와 역의 기여 상대적 정확도의 크기가 다르게 나타나면 연관성의 정도를 명확하게 설명하기가 어려우므로 이들 두 측도를 동시에 고려한 균형화된 기여 상대적 규칙 정확도를 이용하는 것이 가장 바람직하다는 사실을 확인하였다.
지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.
기존의 품사 태깅 방법에서 독립적으로 사용해온 언어 지식과 통계 정보는 품사 태깅의 정확도와 처리 범위의 향상을 위해서 상호 보완적인 특성을 갖는다. 이에 본 논문은 언어 지식과 통계 정보의 보완적 특성을 이용한 규칙 우선 직렬 품사 태깅 방법을 제안한다. 제안된 방법은 언어 지식에 의한 품사 태깅 결과를 선호함으로써 규칙 기반 품사 태깅의 정확도를 유지하며, 언어 지식에 의해서 모호성이 해소되지 않은 어절에 통계 정보에 의한 품사 태깅 결과를 할당함으로써 통계 기반 품사 태깅의 처리 범위를 유지한다. 또한, 수정 언어 지식에 의해 태깅 결과의 오류를 보정함으로써 품사 태깅의 정확도를 향상시킨다. 약 2만 어절 크기의 외부 평가 코퍼스에 대해 수행된 실험 결과, 규칙 우선 직렬 품사 태깅 시스템은 통계 정보만을 이용한 품사 태깅의 정확도보다 32.70% 향상된 95.43%의 정확도를 보였다.
현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.
변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.
한국어 맞춤법 검사기는 전자화된 한국어 텍스트에 나타난 오류어를 검색하여 이를 교정할 대치어를 제시하는 시스템이다. 이때 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 정확하지만, 문맥을 고려하였을 때 오류가 되는 유형으로 교정 난도가 매우 높다. 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉜다. 이때 규칙을 이용한 방법은 그 특성상 정확도가 매우 높지만, 반대로 재현율이 매우 낮다. 본 논문에서는 본 연구진이 기존에 연구하였던 규칙을 일반화하는 방식에 추가로 조건부 확률을 이용한 통계 방식을 결합하여 정확도를 유지하면서 재현율을 향상시키는 방법을 제안한다.
중한기계번역시스템(MATES/CK)의 구문분석은 1120개의 구문분석규칙과 통계적 정보에 의한 확률기반에 따라 그 문장에 가장 적합한 구문트리를 찾아져 적용되는 방식으로 이루어지고 있다. 기존 구문분석 규칙은 자체에 오류가 많고, 새로운 규칙의 생성도 필요하다. 규칙에 대한 제약조건에도 좀 더 구체적이고 정확성을 높일 수 있는 상태로의 전환이 필요하다. 본 논문에서는 중한기계번역시스템(MATES/CK)의 구문분석의 정확도를 높이기 위하여 구문분석규칙을 수정하는 방법에 관하여 알아보고 그 연구과정을 살펴본다.
단백질들은 서로 다른 단백질들과 상호작용하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질들 간의 상호작용 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이터가 산출된 후게놈시대(post-genomic era)에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터들에서 속성들 간의 연관규칙 학습을 통해 잠재적 단백질 상호작용들을 예측하기 위한 연관규칙 기반의 상호작용 예측 방법을 제시한다. 단백질들 간의 상호작용 예측을 위해 고려되는 각 단백질의 다수의 속성차원은 정보이론 기반의 속성선택 알고리즘을 이용하여 효율적으로 줄이며 상호작용의 속성집합을 이용하여 신경망을 훈련시키고 이렇게 훈련된 신경망에서 속성들 간의 연관규칙을 디코딩하여 연관규칙 기반의 상호작용 예측에 활용한다. 연관속성 발굴을 통한 상호작용 예측을 위한 마이닝 방법으로는 연관규칙 발견 알고리즘을 사용하였으며 예측 정확도를 높이기 위하여 신경망 예측 모델의 학습 결과를 디코딩한 규칙들이 추가적으로 사용하였다. 논문에서 제안한 방법을 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 평균 약 $94.5\%$의 예측 정확도를 보였다.
본 논문은 전체 데이터베이스에서 일부 추출된 샘플 데이터에서 빈발항목 집합을 찾는 연관규칙 마이닝 알고리즘을 기술한다. 샘플링기술을 이용하면 마이닝과정에서 필요한 데이터베이스의 접근 양을 줄이므로써 실행시간을 단축시킬 수 있다는 장점이 있지만, 전체데이터베이스를 이용한 마이닝보다 정확도가 떨어진다는 단점이 함께 존재한다. 이전의 Chen의 FAST알고리즘은 샘플링을 이용한 마이닝과정에서 거리오차함수를 이용한 트리밍과정을 통해 빈발 1항목집합에 대한 정확도를 개선시켰다. 이후 IFAST 알고리즘은 트리밍과정에서 빈발2-항목집합까지 고려하여 빈발2-항목집합 이상의 빈발항목집합에서도 정확도를 개선시켰다. 본 논문에서는 트리밍과정에서 사용될 추정데이터를 여러 개의 샘플데이터를 이용하여 얻으므로써 오류항목집합(false itemset)의 수를 줄이고 전체적인 정확도를 향상시키는 새로운 알고리즘을 소개한다.
목적 : 본 연구의 목적은 IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음기관(혀, 입술) 근력 상승, 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화에 끼치는 효과에 대해 연구하고자 하였다. 연구 방법 : 본 연구는 제주에 거주하는 경직형 마비말장애 환자 3명을 대상으로 제주 소재의 대학병원 언어치료실에서 기초선 단계, 7주간 주3회씩 1회기당 30분씩 중재를 한 후에 사후 평가를 실시하여 혀와 입술의 근력, SMST 조음선별검사 중 /ㄹ, ㅅ, ㅈ/ 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화를 연구하는 단일대상연구를 실시하였다. 결과 : IOPI 조음 근력 강화 훈련 프로그램을 경직형 마비말장애 환자들에게 실시한 이후에 조음기관 근력, /ㄹ, ㅅ, ㅈ/ 조음동안 정조음 산출 수, 조음 교대운동 검사 결과 초당 /퍼/, /터/, /커/, /러/, /긍/, /아/, /퍼터커/ 산출 횟수의 증가와 조음 규칙성과 조음 규칙성 및 정확성에서 긍정적인 변화가 나타났다. 결론 : 본 연구 결과, IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 향상을 도모하였으며, 추후 IOPI를 다양한 하위 유형의 마비말장애 환자에게 실시하여 각 하위 유형 간 차이를 비교하고, 마비말장애의 가장 대표적인 뇌성마비 아동들에게 가정에서 IOPI를 활용한 조음기관 기능 훈련을 연계한 프로그램 적용 이후 조음 능력의 변화에 대해 연구한다면 매우 유용할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.