• Title/Summary/Keyword: 규칙기반 AI

Search Result 40, Processing Time 0.026 seconds

Time-based Expert System Design for Coherent Integration Between M&S and AI (M&S와 AI간의 유기적 통합을 위한 시간기반 전문가 시스템 설계)

  • Shin, Suk-Hoon;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • Along with the development of M&S, modeling research utilizing AI technology is attracting attention because of the fact that the needs of fields including human decision making such as defense M&S are increased. Obviously AI is a way to solve complex problems. However, AI did not consider logical time such as input time and processing time required by M&S. Therefore, in this paper we proposed a "time-based expert system" which redesigned the representative AI technology rule-based expert system. It consists of a rule structure "IF-THEN-AFTER" and an inference engine, takes logical time into consideration. We also tried logical analysis using a simple example. As a result of the analysis, the proposal Time-based Expert System proved that the result changes according to the input time point and inference time.

Rule based Semi-Supervised Learning Gomoku Game AI Framework for Control Game Environment (게임 환경을 통제할 수 있는 규칙 기반 Semi-Supervised Learning 오목 인공지능 프레임 워크)

  • Kim, Sun-Min;Gu, Bon-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.618-620
    • /
    • 2022
  • 게임은 수많은 NPC 와 규칙에 의해 작동되는 가상 공간을 의미한다. 이런 가상 공간에서는 규칙을 엄격히 지키면서 수행되는 AI 를 필수로 요구하게 된다. 하지만 강화 학습 기반의 AI 는 복잡한 게임의 규칙을 온전히 지키지 못하고 예상 밖의 행동을 돌출하면서 이를 해결하기 위한 많은 연구도 수행되고 있다. 본 논문에서는 규칙 기반으로 획득한 오목판의 확률 맵과 학습을 통해 획득한 확률맵 데이터를 병합하여 가장 높은 Value 를 가지는 위치를 다음 수로 반환하는 방법을 사용하였다. 향후 연구에서는 ANN(Approximate Nearest Neighbor)알고리즘을 적극 활용하여, 커널의 State 와 보드의 State 비교를 확률적으로 개선할 예정이다. 본 논문에서 제안된 프레임 워크는 게임 AI 연구에 기여할 수 있길 바란다.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

The development of cinema information service using chatbot (챗봇을 활용한 영화정보 서비스 개발)

  • Kim, Yu-Ri
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.365-368
    • /
    • 2018
  • 인공지능 기술이 발달하면서 챗봇 플랫폼이 주목받고 있다. 챗봇이란 규칙 또는 인공지능(AI)을 이용해 사용자와 상호작용을 하는 대화형 인터페이스다. 챗봇에서 대화를 처리하는 방법은 규칙기반 대화 시스템, 검색기능 대화 시스템, 생성기반 대화 시스템이 있다. 본 논문에서는 규칙 기반 대화 시스템을 바탕으로 하는 모바일 영화 챗봇 서비스를 개발하였다. 이를 통하여 사용자는 더 편리하게 영화 관련 정보를 제공받을 수 있다.

확장형 규칙 표식 언어(eXtensible Rule Markup Language): 설계 원리 및 응용

  • 이재규;손미애;강주영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.284-293
    • /
    • 2002
  • XML(eXtensible Markup Language, XML)은 인터넷에서의 자료 교환을 위해 고안된 언어이다. 본 논문에서는 XML의 개념을 발전시킨 확장형 규칙 표식 언어(extensible Rule Markup Language, XRML)를 제안하고 있다. XRML은 웹 페이지에 내재된 암묵적 규칙의 식별, 구조적인 규칙으로의 변환, 사람과 소프트웨어 에이전트간의 지식 공유를 가능하게 하며, 이를 통해 지식기반시스템(Knowledge Based System)과 지식관리시스템(Knowledge Management System)의 통합을 실현할 수 있는 새로운 언어가 될 것이다. 본 고에서는 XRML이 이상과 같은 능력을 갖기 위해 반드시 갖춰야 할 6가지 설계 기준과, 이들 기준을 반영한 XRML 구성 요소로서 RIML(Rule Identification Markup Language), RSML(Rule Structure Markup Language)과 RTML(Rule Triggering Markup Language)을 설계하였으며, 개별 요소들의 기능 및 특성과 함께 태그와 DTD(Document Type Definition)도 식별하였다. 나아가 전술한 구조를 기반으로 하여 XRML을 워크플로우 시스템상의 폼처리에 적용한 Form/XRML이라는 프로토타입 시스템을 설계하고 구현하였다. 본 프로토타입의 개발을 통해, 지식기반시스템의 지식을 활용하는 RTML이 폼을 비롯한 다양한 응용시스템에 내재될 수 있으며, 웹 페이지의 암묵적 규칙과 지식기반시스템의 규칙이 일관성 있게 유지될 수 있음을 보여 주었다. 요컨대 본 연구는 XRML이 지능형 웹으로 발전하기 위한 새로운 도구이며, KBS와 US의 통합을 위한 중요한 도구임을 입증하였다는 점에서 큰 의의를 갖는다고 하겠다.

  • PDF

A Study on History Education with Rule-Based Artificial Intelligence Chatbot. (규칙 기반 AI 챗봇을 활용한 역사 교육에 관한 연구)

  • Dong-Ju Kim;Na-Hyun Kim;Da-Hee Kim;Hyeon-Ju Kim;Seok-Joo Koh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.619-620
    • /
    • 2024
  • 본 논문은 현재 대구 경북지역을 대상으로 진행되고 있는 역사 교육에 있어 초중등 학생들의 학습 활동을 진행하고 사용자의 질문에 정확한 질의응답을 제공하여 유용하게 활용될 수 있는 규칙 기반 AI 챗봇의 아키텍처와 이를 구성하는 각 단계를 제시한다.

A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC (게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘)

  • Joe, In-Whee;Choi, Moon-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1181-1187
    • /
    • 2010
  • This paper proposes a mobile AI (Artificial Intelligence) conducting decision-making in the game through education for intelligent character on the basis of Neural Network. Neural Network is learned through the input/output value of the algorithm which defines the game rule and the problem solving method. The learned character is able to perceive the circumstances and make proper action. In this paper, the mobile AI using Neural Network has been step-by-step designed, and a simple game has been materialized for its functional experiment. In this game, the goal, the character, and obstacles exist on regular 2D space, and the character, evading obstacles, has to move where the goal is. The mobile AI can achieve its goals in changing environment by learning the solution to several problems through the algorithm defined in each experiment. The defined algorithm and Neural Network are designed to make the input/output system the same. As the experimental results, the suggested mobile AI showed that it could perceive the circumstances to conduct action and to complete its mission. If mobile AI learns the defined algorithm even in the game of complex structure, its Neural Network will be able to show proper results even in the changing environment.

A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus (공공 한영 병렬 말뭉치를 이용한 기계번역 성능 향상 연구)

  • Park, Chanjun;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.271-277
    • /
    • 2020
  • Machine translation refers to software that translates a source language into a target language, and has been actively researching Neural Machine Translation through rule-based and statistical-based machine translation. One of the important factors in the Neural Machine Translation is to extract high quality parallel corpus, which has not been easy to find high quality parallel corpus of Korean language pairs. Recently, the AI HUB of the National Information Society Agency(NIA) unveiled a high-quality 1.6 million sentences Korean-English parallel corpus. This paper attempts to verify the quality of each data through performance comparison with the data published by AI Hub and OpenSubtitles, the most popular Korean-English parallel corpus. As test data, objectivity was secured by using test set published by IWSLT, official test set for Korean-English machine translation. Experimental results show better performance than the existing papers tested with the same test set, and this shows the importance of high quality data.

Improving the Classification of Population and Housing Census with AI: An Industry and Job Code Study

  • Byung-Il Yun;Dahye Kim;Young-Jin Kim;Medard Edmund Mswahili;Young-Seob Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, we propose an AI-based system for automatically classifying industry and occupation codes in the population census. The accurate classification of industry and occupation codes is crucial for informing policy decisions, allocating resources, and conducting research. However, this task has traditionally been performed by human coders, which is time-consuming, resource-intensive, and prone to errors. Our system represents a significant improvement over the existing rule-based system used by the statistics agency, which relies on user-entered data for code classification. In this paper, we trained and evaluated several models, and developed an ensemble model that achieved an 86.76% match accuracy in industry and 81.84% in occupation, outperforming the best individual model. Additionally, we propose process improvement work based on the classification probability results of the model. Our proposed method utilizes an ensemble model that combines transfer learning techniques with pre-trained models. In this paper, we demonstrate the potential for AI-based systems to improve the accuracy and efficiency of population census data classification. By automating this process with AI, we can achieve more accurate and consistent results while reducing the workload on agency staff.

Research on Core Technology for Information Security Based on Artificial Intelligence (인공지능 기반 정보보호핵심원천기술 연구)

  • Sang-Jun Lee;MIN KYUNG IL;Nam Sang Do;LIM JOON SUNG;Keunhee Han;Hyun Wook Han
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • Recently, unexpected and more advanced cyber medical treat attacks are on the rise. However, in responding to various patterns of cyber medical threat attack, rule-based security methodologies such as physical blocking and replacement of medical devices have the limitations such as lack of the man-power and high cost. As a way to solve the problems, the medical community is also paying attention to artificial intelligence technology that enables security threat detection and prediction by self-learning the past abnormal behaviors. In this study, there has collecting and learning the medical information data from integrated Medical-Information-Systems of the medical center and introduce the research methodology which is to develop the AI-based Net-Working Behavior Adaptive Information data. By doing this study, we will introduce all technological matters of rule-based security programs and discuss strategies to activate artificial intelligence technology in the medical information business with the various restrictions.