• 제목/요약/키워드: 규칙기반 방법

검색결과 1,170건 처리시간 0.029초

Ontology - Based Intelligent Rule Components Extraction (온톨로지 기반 지능형 규칙 구성요소 추출에 관한 연구)

  • Kim U-Ju;Chae Sang-Yong;Park Sang-Eon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.237-244
    • /
    • 2006
  • 시맨틱 웹 관련연구가 증가함에 따라 하나의 관련분야로 규칙기반 시스템 동의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 하지만 규칙기반 시스템을 활용하기에는 아직도 규칙습득이 많은 제약이 되고 있다. 규칙습득은 웹으로부터 필요한 규칙을 습득하는 일련의 방법인데, 이러한 규칙을 습득하기 위해서는 규칙구성요소를 먼저 식별해야만 한다. 그러나 이러한 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의해 이루어지고 있다. 본 연구의 목적은 웹으로부터 규칙구성요소 식별을 최대한 자동화하고 지식관리자의 수작업을 최소화함으로써 그 부담을 줄여 주는 데 있다. 이러한 방법으로는 온톨로지를 근간으로 하여 웹 페이지와의 문자열 비교, 이러한 비교의 한계를 극복하기 위한 확장등의 방법이 있다. 첫 번째 방법은 온툴로지 기반으로 규칙식별 할 웹 페이지와 비교를 통해 지식관리자의 규칙식별 과정을 최대한 자동화하여 주는 것이다. 여기서 만약 현재 규칙을 식별하고자 하는 웹 사이트와 유사한 시스템의 규칙들을 활용하여 일반화 된 온툴로지가 구축되었다면, 이 온톨로지를 기반으로 규칙을 식별하고자 하는 웹사이트와의 비교를 통해 규칙구성요소를 자동화하여 추출 할 수 있다. 이러한 온툴로지를 기반으로 규칙을 식별하기 위해서는 문자열 비교 기법을 사용하게 된다. 하지만 단순한 문자열 비교 기법만으로는 규칙을 식별하는 데에 자연어 처리에 대한 한계가 있다. 이를 극복하기 위해 다음의 두 번째 방법을 사용하고자 한다. 두 번째 방법은 정형화되지 않은 정보들을 확장하여 사용하는 것이다. 우선 찾고자 하는 단어들의 원형을 찾기 위한 스테밍 알고리즘 기법, WordNet을 이용하여 동의어 유의어등으로 확장을 하는 WordNet Expansion 기법, 의미 유사도를 측정하기 위한 방법인 Semantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다.

  • PDF

Inference Method for Rule-based Knowledge Representation with Fuzzy values and Certainty Factors (퍼지값과 확신도를 허용하는 규칙기반 지식표현에서의 추론방법)

  • 이건명;조충호;이광형
    • Journal of Intelligence and Information Systems
    • /
    • 제1권1호
    • /
    • pp.43-59
    • /
    • 1995
  • 본 논문에서는 규칙기반 지식표현에서 퍼지값과 확신도를 사용할 때 발생하는 문제점을 살펴본다. 이들 문제점 해결을 위해서 규칙의 매칭시에 발생하는 퍼지매칭, 퍼지비교, 구간내의 포함에 대한 만족정돌르 평가하는 척도를 제안하다. 또한, 퍼지값과 확신도를 사용하는 규칙기반 지식표현에 대해 적용가능한 추론방법을 소개한다. 한편, 일반규칙과 퍼지생성규칙을 전문가시스템에서 동시에 융통성있게 사용하는 방법을 제시한다. 끝으로 제안된 방법들을 고려하여 설계한 퍼지 전문가시스템 개발도구인 FOPS5에 대하여 소개한다.

  • PDF

A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking (한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합)

  • 박성배;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • 제31권3호
    • /
    • pp.369-378
    • /
    • 2004
  • In partially free word order languages like Korean and Japanese, the rule-based method is effective for text chunking, and shows the performance as high as machine learning methods even with a few rules due to the well-developed overt Postpositions and endings. However, it has no ability to handle the exceptions of the rules. Exception handling is an important work in natural language processing, and the exceptions can be efficiently processed in memory-based teaming. In this paper, we propose a hybrid of rule-based method and memory-based learning for Korean text chunking. The proposed method is primarily based on the rules, and then the chunks estimated by the rules are verified by memory-based classifier. An evaluation of the proposed method on Korean STEP 2000 corpus yields the improvement in F-score over the rules or various machine teaming methods alone. The final F-score is 94.19, while those of the rules and SVMs, the best machine learning method for this task, are just 91.87 and 92.54 respectively.

The Knowledge Representation Techniques for Community Computing (커뮤니티 컴퓨팅을 위한 규칙기반 지식 표현 방법)

  • Kwon, Hyouck-Jun;Lee, Keon-Soo;Kim, Min-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.205-208
    • /
    • 2006
  • 커뮤니티 컴퓨팅이란 유비쿼터스 컴퓨팅 환경에서 하나의 컴퓨팅 요소를 통해 해결하기 어려운 문제들을 커뮤니티란 메타포를 통해 해결하고자 하는 방법론이다. 커뮤니티는 어떤 목표를 달성하기 위한 컴퓨팅 요소들의 조직으로 기존의 방법론들이 어떤 문제를 해결하기 위해 하나의 조직에 컴퓨팅 요소들이 고정적으로 존재했던 반면 커뮤니티는 컴퓨팅 요소가 동적일 뿐만 아니라 조직 자체도 동적인 특징을 지닌다. 본 논문에서는 기존의 커뮤니티 컴퓨팅에서 필요한 롤(Role)과 정책(Policy)을 기술하는 방법과 구현에서 나타나는 문제점을 지적하고, 대안으로 규칙기반 방법론을 역할과 정책의 기술 방법으로 제시한다. 그리고 이를 실제 구현하기 위한 규칙기반 시스템을 소개하고 기존의 커뮤니티 컴퓨팅의 역할과 정책을 규칙형태로 표현하여 규칙기반 시스템을 이용했을 때의 실현성과 효율성을 검증해 보았다.

  • PDF

Combining Rule-based and Case-based Reasoning for Fire Detection in a ship (선박에서 화재탐지를 위한 규칙 및 사례기반 추론의 통합)

  • 현우석;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.303-306
    • /
    • 2000
  • 본 논문에서는 선박에서 화재탐지를 위해서 규칙 기반 추론과 사례 기반 추론을 통합하는 방법에 대해서 논의하였다. 규칙은 어떤 영역에서 광범위한 경향을 표현하는데 적합하며 사례는 규칙에서 예외적인 상황을 다루는데 적합하다는 점에서 규칙과 사례는 상호 보완적이라 할 수 있다. 즉 어떤 행동이 충분히 반복되면 자연스럽게 규칙이 되며, 잘 확립된 규칙이 있다면 사례를 먼저 추론할 필요가 없다. 그러나 규칙이 실패하게 되면 실패를 만회하기 위해서 사례를 생성하는 것이 하나의 대안이 될 수 있다. 본 논문에서는 일반적인 화재탐지 지식은 규칙으로 표현하고, 예외적인 화재탐지 지식은 사례로 표현함으로써 규칙과 사례가 서로 보완적인 역할을 할 수 있는 통합 방법을 제안하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System)와 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System)를 비교를 통해, 제안한 접근 방법이 화재 탐지율을 향상시킴을 보였다.

  • PDF

A personalized recommender system using genetic algorithms (유전자 알고리즘을 활용한 개인화된 상품추천시스템 개발)

  • 김병국;김경재
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.657-660
    • /
    • 2004
  • 규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

The Method of Classification Considering Rule Weights in the Interval-Valued Fuzzy Sets (구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법)

  • Son Chang-Sik;Jeong Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.85-89
    • /
    • 2006
  • 구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.

  • PDF

온톨로지를 활용한 자동화될 규칙 습득 방법론 및 효과 분석

  • Park, Sang-Eon;Lee, Jae-Gyu;Gang, Ju-Yeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.317-330
    • /
    • 2005
  • 시맨틱 웹 관련연구가 증가함에 따라 지능형 에이전트 혹은 규칙기반 시스템 등의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 그러나 규칙기반 시스템의 활용에는 아직도 규칙습득이 많은 제약이 되고 있다. 이와 같은 제약을 극복하기 위해 웹 페이지로부터 규칙을 습득하기 위한 XRML 방법론이 제안되었다. XRML 방법론은 웹 페이지로부터 규칙을 식별하고 식별된 결과로부터 자동으로 규칙을 생성하는 두 단계로 구성되어 있다. 여기서 규칙의 식별은 규칙생성의 자동화 정도에 매우 중요한 영향을 미친다. 그러나 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의존하고 있다. 이러한 지식관리자의 부담을 줄이기 위해 본 논문에서는 온톨로지 기반의 개선된 규칙식별 방법론을 제안하고자 한다. 이를 위해 먼저 OntoRule이라는 이름의 온톨로지를 설계하였다. OntoRule은 자동화된 규칙 식별을 지원하기 위해 사용되며, 규칙의 구성요소들과 구조에 대한 정보를 포함하고 있다. 그리고 OntoRule을 이용하여 규칙을 식별하는 절하를 제안하였다. OntoRule과 규칙식별 절차를 제안하는 과정에서 온톨로지 학습효과, 하향식 접근방식과 상향식 접근방식의 차이, 온톨로지 적용범위 관리, 규칙 구성요소의 식별순서, 생략된 별수의 식별과 같은 놈점들이 고려되었다. 마지막으로 실험을 통해 제안된 방법론의 효과를 보였다.

  • PDF

Part-of-Speech Tagging System Using Rules/Statistics Extracted by Unsupervised Learning (규칙과 비감독 학습 기반 통계정보를 이용한 품사 태깅 시스템)

  • Lee Donghun;Kang Mi-young;Hwang Myeong-jin;Hwon Hyuk-chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.445-447
    • /
    • 2005
  • 본 논문은 규칙 기반 방법과 통계 기반 방법을 동시에 사용함으로써 두 가지 방법의 장단점을 상호 보완한다. 한 문장에 대한 최적의 품사열은 HMM을 기반으로 Viterbi Algorithm을 사용하여 선택한다. 이때 파라미터 값은 규칙에 의한 가중치 값과 통계 정보를 사용한다. 최소한의 일반규칙을 사용하여 구축한 규칙의 적용에 따라 가중치 값을 구하며 규칙을 적용받지 못하는 경우는 비감독학습으로 추출한 통계정보에 기반을 둔 가중치 값을 이용하여 파라미터 값을 구한다. 이러한 기본 모델을 여러 회 반복하여 학습함으로써 최적의 통계기반 가중치를 구한다. 규칙과 비감독 학습으로 추출한 통계정보를 이용한 본 품사 태깅 시스템의 어절 기반 정확도는 $97.78\%$이다.

  • PDF

The Construction Methodology of a Rule-based Expert System using CART-based Decision Tree Method (CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제6권6호
    • /
    • pp.849-854
    • /
    • 2011
  • To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.