본 논문은 규칙기반 에이전트를 이용하여 여객선 화재시 피난행동특성을 고려한 승객행동모델을 제안한다. 기존 시스템들은 승객의 속도만을 반영한 속도기반모델을 사용하였다. 속도기반모델은 승객의 신체적 특징만 고려한 모델로 피난행동특성을 반영하기 어렵다. 이 문제점을 해결하기 위해 규칙기반 에이전트로 피난행동특성을 반영한 승객모델을 모델링하였다. 규칙기반 에이전트는 지식베이스와 추론엔진으로 구성된다. 지식베이스에는 피난행동특성들 중에서 다양한 행동 패턴을 보여줄 수 있는 예제를 선택하여 규칙형태의 지식으로 표현하고, 추론엔진은 지식을 전방추론하여 승객의 행위를 결정하도록 구현하였다. 이승객모델을 IMO MSC/Circ.1238의 문제 8에 적용하여 시뮬레이션을 진행한 결과 규칙기반 에이전트로 모델링한 승객이 다양한 인간의 행동 패턴을 표현할 수 있음을 검증하였다.
본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.
본 논문은 퍼지 클러스터링을 이용한 규칙 성장 기반 퍼지 분류기의 설계에 대해서 소개한다. 본 논문의 목적은 퍼지 클러스터링을 통해 형성된 증가된 퍼지 규칙을 이용한 새로운 설계 방법론을 개발하는 것이다. 제안된 분류기는 네개의 기능적인 부분으로 구성된다. 퍼지 규칙의 전반부는 퍼지 클러스터링 알고리즘을 이용해 구성된 멤버쉽 함수를 나타낸다. 후반부는 지역 모델을 구성한다. 지역 모델의 파라미터는 가중 최소 자승법에 의해 추정된다. 추론부에서는, 각 퍼지 규칙의 에러 측정후, 가장 높은 에러를 갖는 하나의 퍼지 규칙이 선택된다. 규칙성장 부분에서는, 네트워크의 강화를 위해 규칙의 성장 과정이 이루어지며, 선택된 규칙은 제안된 분류기에서 더 나은 성능을 위해 두 개 또는 세 개의 세분화된 퍼지 규칙으로 나누어진다. 이러한 새로운 규칙은 context 기반 Fuzzy C-Means 클러스터링에 의해서 형성된다. 제안된 규칙 기반 분류기의 효용성을 토론하며, 머신 러닝 데이터를 이용하여 실험을 수행하였다.
본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.
모델 기반 아키텍처 (Model Driven Architecture, MDA)는 플랫폼 독립적인 모델로부터 변환 규칙을 이용하여 특정 플랫폼 용 모델을 생성하는 소프트웨어 자동화 기술로 각광을 받고 있다. EJB(Enterprise JavaBeans)는 컴포넌트 기반의 분산 컴퓨팅을 위한 아키텍처로써 Java 기반 어플리케이션 개발에서 가장 널리 사용되는 개발 플랫폼이다. 기존의 PIM에서 EJB 용 PSM으로 변환 규칙에 대한 연구는 아직 미흡하고 체계적이지 못하다. 본 논문에서는 PIM 의 구조적인 구성요소와 EJB 용 PSM 의 구성요소를 비교 분석하여 변환 규칙을 정의한다. EJB 어플리케이션 개발을 위해 제안된 변환 규칙을 적용한다면 모델간의 대응관계를 효율적으로 표현 할 수 있기 때문에 이들간의 일관성과 추적성을 높일 수 있고 제품의 생산성, 유지보수성을 높일 수 있다.
본 연구는 한국어 음성합성 시스팀에서 한글 텍스트를 음소로 변환 시키는 규칙기반과 신경망을 결합한 한글-음소 변환 시스팀을 제안하고 이를 위해 시스팀 모델을 설계하고 시스팀의 각 구성요소들을 설명하며 한국어 음운 변동 규칙중 설측음화 데이타와 설측음화에 상충되는 데이타를 사용하여 시스팀을 실험하고 제안된 모형의 타당성을 분석한다.
규칙 기반 패러다임은 복잡한 프로세스를 처리할 수 있는 정형성과 융통성을 제공하기 때문에 여러 프로세스 중심 소프트웨어 공학 환경에 도입되어 왔다 그러나, 기존의 규칙 기반 패러다임을 채택한 시스템들의 경우 프로세스 모델을 작성하거나 이해하기 어렵고 프로세스 모델링 언어가 확장 또는 개선될 때마다 추론 엔진을 수정하거나 최악의 경우에는 새로 개발하여야 한다. 본 논문에서는 빈번히 발생하는 프로세스 변경에 유동적으로 대처할 수 있으며 프로세스 모델을 규칙기반 언어의 사실로 직관적으로 맵핑함으로써 프로세스의 병렬성을 효과적으로 제어할 수 있다는 규칙 기반 패러다임의 장점을 살리면서 기존 규칙 기반 PSEE의 단점인 사용의 용이성과 추른 엔진의 안정성 문제를 해결한 PRAiSE 시스템을 기술한다. PRAiSE에서는 RAiSE라는 그래픽 프로세스 모델링 언어를 제공하며 작성된 프로세스 모델은 규칙 기반 전문가 시스템 도구인 CLiPS로 구현한 프로세스 엔진에 의해 해석되고 실행된다.
기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.
인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.
품사 태깅은 형태소 분석 이후 발생한 모호성을 제거하는 것으로, 통계적 방법과 규칙에 기 반한 방법이 널리 사용되고 있다. 하지만, 이들 방법론에는 각기 한계점을 지니고 있다. 통계적인 방법인 은닉 마코프 모델(Hidden Markov Model)은 유연성(flexibility)을 지니지만, 교착어(agglutinative language)인 한국어에 있어서 제한된 윈도우로 인하여, 중의성 해결의 실마리가 되는 어휘나 품사별 제대로 참조하지 못하는 경우가 있다. 반면, 규칙에 기반한 방법은 차체가 품사에 영향을 받으므로 인하여, 새로운 태그집합(tagset)이나 언어에 대하여 유연성이나 정확성을 제공해 주지 못한다. 이러한 각기 서로 다른 방법론의 한계를 극복하기 위하여, 본 논문에서는 통계와 규칙을 통합한 한국어 태깅 모델을 제안한다. 즉 통계적 학습을 통한 통계 모델이후에 2차적으로 규칙을 자동학습 하게 하여, 통계모델이 다루지 못하는 범위의 규칙을 생성하게 된다. 이처럼 2단계의 통계와 규칙의 자동 학습단계를 거치게 됨으로써, 두개 모델의 단점을 보강한 높은 정확도를 가지는 한국어 태거를 개발할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.