• Title/Summary/Keyword: 규모별 추정

Search Result 380, Processing Time 0.036 seconds

Evaluation of Available Water Resources of Soyang Reservoir and Chungju Reservoir according to Climate Change Scenarios (기후변화 시나리오에 따른 소양강댐과 충주댐의 가용수자원 평가)

  • Choi, Sung-Gyu;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.147-151
    • /
    • 2007
  • 인위적인 온실가스 증가의 영향으로 지구의 기온이 상승하고 있으며, 우리나라에서도 이러한 전 지구적인 온난화 추세를 상회하는 경향을 보이고 있다. 20세기 후반부터 기후변화에 따른 강수량 및 집중호우의 증가 추세가 보고되고 있으며, 이에 따른 피해 또한 증가하고 있다. 이러한 이상기후 현상이 전 세계적으로 빈번히 발생하여 가용 수자원의 변동이 커지고 있다. 추가적인 댐 건설이 어려운 상황이고, 댐 운영의 불확실성에 의한 현실적인 운영의 어려움으로 인하여 보수적인 댐 운영이 이루어지고 있는 실정이므로, 한정된 수자원의 효율적인 이용과 예측이 요구되고 있다. 본 연구에서는 기상연구소에서 개발된 A2, B2 기후변화 시나리오에 따른 다목적댐에서의 용수공급능력의 변화에 대한 평가를 수행하였다. 대규모 유역의 대표적인 다목적댐을 선정하고 기후변화 시나리오별 유입량을 분석하였으며, 이를 저수지 모의운영 기법을 이용하여 기후변화 시나리오에 따른 각 댐의 신뢰도 95% 용수공급능력과 예상발전량을 산정함으로써 가용수자원을 평가하였다. 또한 다목적댐의 과거 실적 유입량 자료를 이용한 모의운영 결과와 비교하여 제시하였다. 과거 실적에 의한 결과와 비교할 때, 기후변화 시나리오에 따른 향후 국내 가용 수자원량에도 큰 변화가 있을 것으로 예측되었다. 이로부터 댐 운영에 있어서 홍수기의 안정적인 댐관리와 갈수기의 적절한 수자원 분배를 위한 방향을 제시할 수 있다. 본 연구의 결과는 향후 기후변화에 따른 저수지의 효율적인 운영을 위한 유역의 수자원 영향 평가에 활용할 수 있을 것으로 기대된다.댐의 순기능에 대한 정량적인 분석을 수행하였다. 또한 댐별 방류량을 변동하여 하류 주요지점에 미치는 유황개선효과를 정량화하였다. 마지막으로 댐의 효율을 최대화한 하류확보가능하천유지유량을 월별평균량으로 산정하였다. 이는 향후 오염총량제 기준유량 및 환경용수의 법제화를 통한 하천유지용수의 증가시 비구조적 대책의 공급가능 최대량으로 활용가능할 것으로 사료된다.원에서 인위적으로 방류한 양이 많았기 때문으로 추정할 수 있다. 두 지점의 1월 유출이 100 % 이상인 것은 동절기 하천 결빙으로 인한 유량파악이 힘든 것으로 나타났다. 1월의 하천수위는 계측기에 기록된 수위값으로 유량을 산정한 것이다. 3월, 10월, 12월의 유출이 많은 것은 전월말 발생한 강우의 영향으로 크게 나타났다.다. 5. 초장의 절대치는 품종간에 차이는 있으나 비교적 조파구간에는 초장에 큰 변이가 없었고 파종기가 늦어짐에 따라 짧아졌다. 초장의 신장속도는 파종기가 늦어짐에 따라 현저하게 빨라지고 특히 조생종이 만생종보다 더욱 가속적인 경향이었다. 따라서 최고초장과 최저초장과의 절대치의 차이는 조생종일수록 적고 만생종일수록 큰 격차를 보이었다. 6. 간직경에 있어서도 만생종은 일반적으로 조기파종할수록 굵고, 조생종과 중생종은 4월 25일 파종기가 가장 굵은 편이며 이보다 파종기가 지연 가늘어지는 경향이었다. 7. 간중은 품종의 조만생에 따라 약간의 차이는 있으나 대체로 적기(4월 25일~5월 15일)보다 조기 혹은 만기 파종하면 작아지나 파종기 이동에 따른 간중의 변화는 품종의 조만성에 따라 양상을 달리하여 조생종은

  • PDF

Status of Soil Remediation and Technology Development in Korea (국내 오염토양 복원 현황과 기술 동향)

  • Yang, Ji-Won;Lee, You-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.311-318
    • /
    • 2007
  • Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or treatment methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Experimental Methodology and Calibration of TDR (시간영역 광전자파 분석기(Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 실험방법 및 검정)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.699-712
    • /
    • 1996
  • Field scale experiments using an automated 144-channel TDR system were conducted which monitored the movement of solute through unsaturated loamy soils. The experiments were carried out on two different field plots of 0.54 ha to study the vertical movement of solute plume created by applying a square pulse of $CaCl_2$ as a tracer. The residence concentration was monitored at 24 locations on a transect and 5 depths per location by horizontally-positioning 50 cm long triple wire TDR probes to study the heterogeneity of solute travel times and the governing transport concept at field scale. This paper describes details of experimental methodology and calibration aspects of the TDR system. Three different calibration methods for estimation of solute concentration from TDR-measured bulk soil electrical conductivity were used for each field site. Data analysis of mean breakthrough curves (BTCs) and parameters estimated using the convection-dispersion model (CDE) and the convective-lognormal transfer function model (CLT) reveals that the automated TDR system is a viable technique to study the field scale solute transport providing a normal distribution of resident concentration in a high resolution of time series, and that calibration method does not significantly affect both the shape of BTC and the parameters related to the peak travel time. Among the calibration methods, the simple linear model (SLM), a modified version of Rhoades' model, appears to be promising in the calibration of horizontally-positioned TDR probes at field condition.

  • PDF

Hyperbaric Oxygen Treatment in Acute CO Poisoning (일산화탄소중독치료(一酸化炭素中毒治療)에 있어 고압산소요법(高壓酸素療法)의 효과(效果)에 관(關)한 연구(硏究))

  • Yun, Dork-Ro;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.153-156
    • /
    • 1983
  • 1950년(年) 이후(以後) 무연탄(無煙炭)으로 만든 연탄(煉炭)을 취사(炊事), 난방용(煖房用)으로 가정(家庭)에서 광범위(廣範圍)하게 사용(使用)하게 되면서 연탄(煉炭)가스내(內)의 일산화탄소(一酸化炭素)로 인(因)한 중독사고(中毒事故)가 빈발(頻發)하여 심각(深刻)한 국민보건(國民保健)의 문제(問題)가 되어왔다. 저자(著者)들의 실태조사(實態調査)(1975년도(年度))에 의(依)하면 서울특별시일원(特別市一圓)에 있어 일산화탄소중독(一酸化炭素中毒)의 년간발생(年間發生)은 인구(人口), 10만당(萬當) 경증(輕症) 260명(名), 혼수상태(昏睡狀態)의 중증중독(重症中毒) 45명(名), 사망(死亡) 1명(名)으로 위험인구(危險人口)를 3,000만명(萬名)으로 하였을 때 전국적(全國的)으로 일산화탄소중독(一酸化炭素中毒)의 추정발생수(推定發生數)는 년간(年間) 경증(輕症) 78만명(萬名), 중증(重症) 13만(萬) 5천명(千名), 사망(死亡) 3,000명(名)으로 그 피해(被害)의 규모(規模)가 100만을 육박(肉薄)하는 가공(可恐)할 수자(數字)를 보여주고 있다. 저자(著者)들은 이러한 심각(深刻)한 국민보건(國民保健)의 문제(問題)를 우선(于先) 실천가능(實踐可能)한 제이차예방(第二次豫防)에 역점(力點)을 두어 고압산소요법(高壓酸素療法)을 보급(普及)할 목적(目的)으로 일인용고압산소장치(一人用高壓酸素裝置)를 개발(開發)하고 1969년(年) 1월(月)에 서울대학교병원(大學校病院)에 고압산소치료실(高壓酸素治療室)을 개설(開設)하여 급성일산화탄소(急性一酸化炭素) 중독환자(中毒患者)에 대(對)한 응급치료(應急治療)를 실시(實施)하여 1978년(年)까지 10년간(年間)의 치료결과(治療結果)를 요약(要約)한바 다음과 같다. 1. 총치료환자수(總治療患者數)는 2,242명(名)이고 회복(回復)된 수(數)는 2,202명(名)으로 98.2%의 회복률(回復率)을 보였다. 2. 계절적(季節的)으로 10월(月)에서 4월(月)까지가 연중최성기(年中最盛期)이나 5월(月)에서 9월(月)까지도 적지않은 환자(患者)의 발생(發生)을 볼 수 있었다. 3. 연령별분포(年齡別分布)를 보면 15세(歲)${\sim}29$세군(歲群)이 전체환자(全體患者)의 반이상(半以上)인 52.7%를 차지하고 있고 $0{\sim}14$세군(歲群)은 인구비(人口比)에 대해 발생(發生)이 훨씬 적은 결과(結果)를 보이고 있다. 4. 도착시간별(到着時間別) 입원율(入院率)은 오전(午前) 10시이후(時以後) 도착군(到着群)서부터는 입원율(入院率)이 급증(急增)하는데 이는 병원도착(病院到着)이 늦일수록 당일회복(當日回復)이 되지못하고 입원가료(入院加療)하게 됨을 나타내주는 결과(結果)라 할 수 있다. 5. 병발증(倂發症)으로는 급성욕창, 폐렴(肺炎) 및 신경학적(神經學的) 이상등(異常等)의 소견(所見)을 많이 볼 수 있었다.

  • PDF

Trend Analysis of Earthquake Researches in the World (전세계의 지진 연구의 추세 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Jeon, Hang-Tak;Cheong, Jae-Yeol
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

Estimates on the Long-term Landform Changes Near Sinduri Beaches (신두리 해빈 장기해안지형변화 탐지 및 추정)

  • Yun, Konghyun;Lee, Chang Kyung;Kim, Gyung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1315-1328
    • /
    • 2022
  • Sinduri beach is a typical sedimentary landform that forms sand dunes due to the influence of the northwest wind in winter. Due to the its large scale and well-developed nature, it has been recognized for conservation value and is currently designated as Natural Monument No. 431, and continuous monitoring is required in terms of the preservation of topographical values. In this study, aerial images, drone images, and drone-based LiDAR data during 36 years were used for long-term topographical change observation of the Sinduri coastal sand dunes located in Taean-gun, Chungcheongnam-do. To implement this, the amount of change in elevation and volume for each period was calculated by applying the difference of Digital Elevation Model (DEM) based on raster calculation using the numerical elevation model generated from the raw data. Also, the amount of change in volume based on probability was calculated using the error propagation law for the intrinsic error of each data source. As a result, it can be seen that from 1986 to 2022, deposition of 35,119 m3 occurred in region of interest A (area: 17,960 m2) and 54,954 m3 of deposition occurred in region of interest B (area: 17,686 m2).

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

Monitoring of Working Environment Exposed to Particulate Matter in Greenhouse for Cultivating Flower and Fruit (과수 및 화훼 시설하우스 내 작업자의 미세먼지 노출현황 모니터링)

  • Seo, Hyo-Jae;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • With the wide use of greenhouses, the working hours have been increasing inside the greenhouse for workers. In the closed ventilated greenhouse, the internal environment has less affected to external weather during making a suitable temperature for crop growth. Greenhouse workers are exposed to organic dust including soil dust, pollen, pesticide residues, microorganisms during tillage process, soil grading, fertilizing, and harvesting operations. Therefore, the health status and working environment exposed to workers should be considered inside the greenhouse. It is necessary to secure basic data on particulate matter (PM) concentrations in order to set up dust reduction and health safety plans. To understand the PM concentration of working environment in greenhouse, the PM concnentrations were monitored in the cut-rose and Hallabong greenhouses in terms of PM size, working type, and working period. Compare to no-work (move) period, a significant increase in PM concentration was found during tillage operation in Hallabong greenhouse by 4.94 times on TSP (total suspended particle), 2.71 times on PM-10 (particle size of 10 ㎛ or larger), and 1.53 times on PM-2.5, respectively. During pruning operation in cut-rose greenhouse, TSP concentration was 7.4 times higher and PM-10 concentration was 3.2 times higher than during no-work period. As a result of analysis of PM contribution ratio by particle sizes, it was shown that PM-10 constitute the largest percentage. There was a significant difference in the PM concentration between work and no-work periods, and the concentration of PM during work was significant higher (p < 0.001). It was found that workers were generally exposed to a high level of dust concentration from 2.5 ㎛ to 35.15 ㎛ during tillage operation.

Evaluation of Characteristics of Re-liquefaction Resistance in Saturated Sand Deposits Using 1-g Shaking Table Test (1-g 진동대시험을 이용한 포화된 모래지반의 재액상화 강도 특성 평가)

  • Ha Ik-Soo;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • Many case histories of re-liquefaction phenomena seem to support the idea that sand deposits, if they once have been liquefied, could be reliquefied again by a subsequent earthquake even though the earthquake is smaller than the previous one. The magnitude of the strains induced in the initial liquefaction has a significant influence on the resistance of the sample to re-liquefaction. The deposits undergoing liquefaction experience large shear strain during liquefaction. And this previous strain changes the microstructure into highly anisotropic structure such as columnlike structure and connected voids. This type of anisotropy is so unstable that it can reduce re-liquefaction resistance. It is blown that the extent of anisotropic structural change depends on the gradation characteristics of ground. The purpose of this study is to estimate the correlation between the gradation characteristics of the sand and the ratio of re-liquefaction resistance to liquefaction resistance. In this study, 1-g shaking table tests were carried out on five different kinds of sands. During the tests the values of excess pore pressure at various depths and surface settlements were measured. Re-liquefaction resistances were not affected by the initial void ratio and the effective confining pressures, and the deposits of all test sands which had once been liquefied were reliquefied in the cyclic loading number below 1 to 1.5. The ratio of re-liquefaction resistance to liquefaction resistance linearly decreased as $D_{10}/C_u$ increased, and was constant as about 0.2 above the value of $D_{10}/C_u$, 0.15 mm.