• Title/Summary/Keyword: 궤도 예측

Search Result 326, Processing Time 0.023 seconds

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

GEANT4, SPENVIS 를 이용한 STEIN 검출기의 배경계수 예측

  • Jeon, Jong-Ho;Park, Seong-Ha;Kim, Yong-Ho;Seon, Jong-Ho;Jin, Ho;Lee, Dong-Hun;Lin, Robert P.;Immel, Thomas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.230.2-230.2
    • /
    • 2012
  • 경희대학교에서 제작중인 초소형 위성 TRIO-CINEMA (TRiplet Ionosphere Observatory-Cubesat for Ion, Neutral, Electron and MAgnetic fields)에 탑재될 입자검출기 STEIN (SupraThermal Electron, Ion, Neutral)은 정전 편향기를 이용하여 4~300keV의 대전입자 혹은 중성입자들을 분리하여 검출하도록 이루어져있다. CINEMA 운용 궤도에서는 STEIN 정전 편향기를 통하지 않고 검출기 내부로 들어오는 입자들로부터 생기는 배경계수가 포함되어 검출될 것으로 예상되므로 STEIN 검출기의 결과값의 신뢰성을 높이기 위해 배경계수값을 예측할 필요성이 있다. 본 연구에서는 SPENVIS (The Space Environment Information System)를 통해 CINEMA 운용 궤도에 존재하는 입자들의 유량을 계산하였고 GEANT4 (GEometry ANd Tracking)를 통해 CINEMA 운용 궤도상의 STEIN의 외부 환경을 모사하여 배경계수값을 예측하였다. 향후 STEIN의 측정값에 배경계수값을 차감한다면 측정값의 신뢰성이 높아질 것으로 기대된다.

  • PDF

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

New TLE generation method based on the past TLEs (과거 TLE정보를 활용한 새로운 TLE정보 생성기법)

  • Cho, Dong-Hyun;Han, Sang-Hyuck;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.881-891
    • /
    • 2017
  • In this paper, we described the new TLE(Two Line Elements) generation method based on the compansation technique by using past TLEs(Two Line Elements) released by JSpOC(Joint Space Operation Center) in USA to reduce the orbit prediction error for long duration of SGP4(Simplified General Perturbations 4) which is a simplifed and analytical orbit propagator. The orbital residuals the orbital difference between two ephemeris for the first TLE only and for the all TLEs updated by JSpOC for the past some period was applied for this algorithm instead of general orbit determination software. Actually, in these orbital residuals, the trend of orbit prediction error from SGP4 is included. Thus, it is possible to make a simple residual function from these orbital residulas by using the fitting process. By using these residual functions with SGP4 prediction data for the currnet TLE data, the compansated orbit prediction can be reconstructed and the orbit prediction error for long duration of SGP4 is also reduced. And it is possible to generate new TLE data from it. In this paper, we demonstraed this algorithm in simple simulation, and the orbital error is decreased dramatically from 4km for the SGP4 propagation to 2km for it during 7 days as a result.

Application of Time-Series Model to Forecast Track Irregularity Progress (궤도틀림 진전 예측을 위한 시계열 모델 적용)

  • Jeong, Min Chul;Kim, Gun Woo;Kim, Jung Hoon;Kang, Yun Suk;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • Irregularity data inspected by EM-120, an railway inspection system in Korea includes unavoidable incomplete and erratic information, so it is encountered lots of problem to analyse those data without appropriate pre-data-refining processes. In this research, for the efficient management and maintenance of railway system, characteristics and problems of the detected track irregularity data have been analyzed and efficient processing techniques were developed to solve the problems. The correlation between track irregularity and seasonal changes was conducted based on ARIMA model analysis. Finally, time series analysis was carried out by various forecasting model, such as regression, exponential smoothing and ARIMA model, to determine the appropriate optimal models for forecasting track irregularity progress.