• Title/Summary/Keyword: 궤도조정

Search Result 109, Processing Time 0.023 seconds

Estimation of Thruster Efficiency for Koreasat I, II under APEMAC Operation (무궁화위성1, 2호 APEMAC을 통한 추력기 효율 추정 연구)

  • Park, Young-Woong;Park, Bong-Kyu;Nam, Moon-Gyung;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.141-147
    • /
    • 2002
  • Estimation of thrusters efficiency is a very important process at the end of lifetime of a satellite. This paper introduces a technique to estimate the efficiency change of thrusters considering bubble effect for Koreasat I. During APEMAC(Automatic Pitch Error/ Momentum Adjust Control), the change in thruster efficiency is estimated to compare the attitude telemetry data of the Koreasat I with the results of the control logic using Simulink. The outcome of this study is expected to contribute to improving the operational load at the end of generic communication satellite mission.

Positional Precision Improvement of RFM by the correlation analysis and Production of DEMs (상관도 분석을 통한 RFM의 위치 정확도 분석 및 수치표고모형의 제작)

  • Sohn, Hong-Gyoo;Sohn, Duk-Jae;Park, Choung-Hwan;You, Hyung-Uk;Pi, Mun-Hui
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.27-33
    • /
    • 2002
  • 최근 들어 다항식비례모형(RFM: Rational Function Model)은 비전문가에게 있어서 지형보정을 위한 정확도 문제를 해결함과 동시에 센서 종류에 상관없이 적용 가능한 범용적인 센서모델링 기법으로 각광을 받고 있다. 그러나 엄밀(physical) 모델이 없는 센서 혹은 위성의 궤도력 자료를 제공하지 않는 센서의 경우 다항식비례모형의 적용을 위해서는 다수의 매개변수 사용으로 인한 계수들 간의 상관성을 고려해야 한다. 이에 본 연구에서는 2차 다항식비례모형에 기초하여 전방 다항식비례모형(Forward RFM)과 상관도 분석을 통한 전방 다항식비례모형의 이른 및 위치정확도에 관한 연구를 수행하였다. 대상연구지역은 KOMPSAT(Korea Multi-Purpose Satellite)과 SPOT으로 촬영한 대전광역시와 그 주변지역으로 SPOT과 KOMPSAT 모두 상관성 분석 전에는 대략 50% 정도의 검사점에 대해 과대오차(>100m)가 얻어졌으며, 이 점들을 제외한 검사점에 대해서도 SPOT은 평균수평오차 20-24m, 평균표고오차 25m, KOMPSAT은 평균수평오차 15-24m, 평균표고오차 30m를 나타내었다. 전방 다항식비례모형에 대하여 상관성 분석을 수행한 후에는 검사점에 대한 모든 과대오차 조정결과가 소거되었고 검사점에 대해서 SPOT은 평균수평오차 8.8m, 평균표고오차 25.2m, KOMPSAT은 평균수평오차 8.4m, 평균표고오차 14.5m를 나타내었다. 최종적으로 연구지역에 대한 수치표고모형의 제작을 통해 상관도 분석을 통한 다항식비례모형의 실제 적용 가능성을 보여주었다.

  • PDF

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 1: Performance Characteristics and Application of Liquid-monopropellants (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 1: 단일액체추진제의 성능특성 및 활용)

  • Kim, Jeong-Soo;Park, Jeong;Jung, Hun;Kam, Ho-Dong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.175-178
    • /
    • 2011
  • A performance characteristics and application status of liquid-monopropellants used for 3-axis control thrusters are surveyed, in this paper. Hydrogen peroxide was widely used as monopropellant until mid-1960s, but it is rapidly replaced with hydrazine which has better performance of specific impulse, storability, and so on. Hydrazine is mostly employed as a liquid-monopropellant of satellite, interplanetary spacecraft, and space launch vehicle owing to its moderate performance features.

  • PDF

Conceptual Design Analysis of Satellite Communication System for KASS (KASS 위성통신시스템 개념설계 분석)

  • Sin, Cheon Sig;You, Moonhee;Hyoung, Chang-Hee;Lee, Sanguk
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • High-level conceptual design analysis results of satellite communication system for Korea augmentation satellite system (KASS) satellite communication system, which is a part of KASS and consisted of KASS uplink Stations and two leased GEO is presented in this paper. We present major functions such as receiving correction and integrity message from central processing system, taking forward error correction for the message, modulating and up converting signal and conceptual design analysis for concepts for design process, GEO precise orbit determination for GEO ranging that is additional function, and clock steering for synchronization of clocks between GEO and GPS satellites. In addition to these, KASS requires 2.2 MHz for SBAS Augmentation service and 18.5 MHz for Geo-ranging service as minimum bandwidths as a results of service performance analysis of GEO ranging with respect to navigation payload(transponder) RF bandwidth is presented. These analysis results will be fed into KASS communication system design by carrying out final analysis after determining two GEOs and sites of KASS uplink stations.

OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS (B-평면 조준법을 이용한 화성 탐사선의 궤적 보정을 위한 최적의 기동 설계)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.451-462
    • /
    • 2005
  • Optimal Trajectory Correction Maneuver (TCM) design algorithm has been developed using the B-plane targeting method for future Korean Mars missions. For every-mission phase, trajectory informations can also be obtained using this developed algorithms which are essential to design optimal TCM strategy. The information were computed under minimum requiring perturbations to design Mars missions. Spacecraft can not be reached at designed aim point because of unexpected trajectory errors, caused by many perturbations and errors due to operating impulsive maneuvers during the cruising phase of missions. To maintain spacecraft's appropriate trajectory and deliver it to the designed aim point, B-plane targeting techniques are needed. A software NPSOL is used to solve this optimization problem, with the performance index of minimizing total amount of TCM's magnitude. And also executing time of maneuvers on be controlled for the user defined maneuver number $(1\~5)$ of TCMs. The constraints, the Mars arrival B-plane boundary conditions, are formulated for the problem. Results of this work show the ability to design and analyze overall Mars missions, from the Earth launch phase to Mars arrival phase including capture orbit status for future Korean Mars missions

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

A Study on the D-InSAR Method for Micro-deformation Monitoring in Railway Facilities (철도시설물 미소변형 모니터링을 위한 D-InSAR 기법 연구)

  • Kim, Byung-Kyu;Lee, Changgil;Kim, Winter;Yoo, Mintaek;Lee, Ilhwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.43-54
    • /
    • 2022
  • The settlement at the railroad foundation is often the leading cause of track irregularity and potential derailment. The control of such deformation is considered necessary in track maintenance practice. Nevertheless, the monitoring process performed by in situ surveying requires an excessive amount of manpower and cost. The InSAR, a remote sensing technique by RADAR satellite, is used to overcome such a burden. The PS-InSAR technique is preferred for a long-term precise monitoring method. However, this study aims to obtain relatively brief analysis results from only two satellite images using the D-InSAR technique, while a minimum of 25 images are required for PS-InSAR. This study verifies the precision of D-InSAR within a few millimeters by inspecting railroad facilities and land settlements in Korea Railroad Research Institute's test track with images from TerraSAR-X Satellite. Multiple corner reflectors were adopted and installed on an embankment and the building roof to raise the surface reflectivity. Those reflectors were slightly adjusted periodically to verify the detecting performance. The results revealed the optimum distance between corner reflectors. Further, the deformation of railway tracks, slopes, and concrete structures was analyzed successively. In conclusion, this study indicates that the D-InSAR technique effectively monitors the short-term deformation of a broad area such as railway structures.

A Study of Interpolation Methods for the Water Hammer Analysis using the Method of Characteristics (특성선 방법을 이용한 관망 수격현상 해석의 보간방법연구)

  • Jung, Bong Seog;Kim, Chu In;Kim, Sang Hyun;Park, Nam Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.363-373
    • /
    • 2000
  • It is necessary to employ the interpolation technique to resolve problems, which are associated with the characteristic locus in time-distance space, in the unsteady analysis of pipe flow. Various interpolation methods such as linear timeline interpolation, linear spaceline interpolation, wave speed adjustment, cubic spaceline interpolation and cubic timeline interpolation have been suggested and tested to investigate the interpolation error. Performance of various interpolation techniques was evaluated both a single pipeline and a complex one. The range of error was calculated as the courant number varied between 0 and 1 in a single pipeline. Reorganization of computational element and proper selection of interpolation method are found to be prerequisites for the effective computation of unsteady analysis.

  • PDF

Reliability of Exterior Orientation in Bundle Adjustment for SPOT Imagery (SPOT 영상을 위한 번들조성에서 외부표정의 신뢰성)

  • Park, Hong Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.151-158
    • /
    • 1992
  • Topographic mapping from economic SPOT stereo imagery than aerial photographs has become possible. Many of authors have studied the possibility of base map revisions and the accuracy of results. They have concluded that the SPOT image is suitable for 1/50,000 to 1/100,000 topographic map. For topographic map, orthophoto and DTM generation from SPOT imagery, accurate exterior orientation parameters are needed. But since the geometric characteristic of SPOT image is dynamic linear array imagery, the conventional bundle adjustment for photogrammetry can not be directly applied. Reliability is the ability to detect gross error, which is called the internal reliability, and the effect of non-detectable gross error on the results of exterior orientation, which is called the external reliability. This paper shows how the reliability of SPOT imagery depends on the different coordinate systems, presentations of coordinate for flight direction, orders of exterior orientation parameters and distribution of control points, and thus analyses the theoretical reliability of the exterior orientation, which can provide a basis for the planning of SPOT projects.

  • PDF

Spacecraft Bus Initial Activation and Checkout of a LEO Satellite (저궤도 위성의 본체 초기 점검)

  • Jeon, Moon-Jin;Kwon, Dong-Young;Kim, Day-Young
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • A LEO Satellite performs automatic initial operations by FSW after separation from a launch vehicle. After initial operation by FSW is finished, preparation for normal operation is performed by ground during bus initial activation and checkout phase. First of all, we check state of health of the satellite including solar array deployment status. After then, each unit of spacecraft bus is activated and checked. After activation and checkout of every units used for normal operation, we check maneuver performance for imaging mission and orbit maintenance performance. Because the Bus IAC is performed during limited ground contact time, every detailed procedure must be designed considering ground contact. Therefore, the Bus IAC procedure is separated into several parts based on ground contact duration. In addition, the procedures for every possible operation including expected situation as results of IAC procedures and unexpected contingency situation must be prepared. The contingency operation is also designed based on ground contact duration. The LEO satellite was successfully launched and the Bus IAC was successfully performed. In this paper, we explain design concepts and execution results of Bus IAC.