• Title/Summary/Keyword: 궤도전이

Search Result 209, Processing Time 0.023 seconds

Successive Backward Sweep Method for Orbit Transfer Augmented with Homotopy Algorithm (호모토피 알고리즘을 이용한 Successive Backward Sweep 최적제어 알고리즘 설계 및 궤도전이 문제에의 적용)

  • Cho, Donghyurn;Kim, Seung Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.620-628
    • /
    • 2016
  • The homotopy algorithm provides a robust method for determining optimal control, in some cases the global minimum solution, as a continuation parameter is varied gradually to regulate the contributions of the nonlinear terms. In this paper, the Successive Backward Sweep (SBS) method, which is insensitive to initial guess, augmented with a homotopy algorithm is suggested. This approach is effective for highly nonlinear problems such as low-thrust trajectory optimization. Often, these highly nonlinear problems have multiple local minima. In this case, the SBS-homotopy method enables one to steadily seek a global minimum.

OPTIMAL ORBIT TRANSFER UNDER EARTH ZONAL POTENTIAL (지구 비대칭 중력장 내에서 에너지 최적화 궤도전이)

  • 문인상;박종욱;서영수;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.37-45
    • /
    • 1990
  • It was investigated that the effect of zonal harmonics to transfer orbit. Since parking orbit is located at low altitude, the zonal harmonics affects transfer orbit relatively high sense. So under the zonal harmonics, eccentricity and semi-major-axis which were related orbit altitude at the first hand, were investigated. As a result the zonal harmonics increases the altitude of apogee of transfer orbit. So if the zonal harmonics is considered in orbit transfer the fuel can be saved a little.

  • PDF

Development of Propulsion Subsystem for KOMPSAT (다목적 실용위성의 추진시스템 개발)

  • 최진철;양승근;윤효철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.9-9
    • /
    • 1998
  • 다목적 실용위성의 궤도전이 및 위성체 자세제어를 위한 추진시스템의 설계요소에는 구조적 안전성, 우주환경에서의 열제어를 위한 회로 및 구성하드웨어 설계, 연료계통 맥압강하를 위한 장치설계 및 추력기 배기가스 영향을 고려한 형상설계 등이 있으며, 설계검증을 위해 부분해석이 수행된다. 또한 발사환경과 우주 궤도환경에서의 추진시스템 성능평가를 위한 연제어계 기능시험, 압력인증시험, 청정도시험 및 내부/외부 누설시험이 수행된다. 본 논문에서는 추진시스템 설계 및 조립공정에 대해 기술하였고, 시험분석을 통해 시스템의 설계 및 조립공정상의 신뢰성을 검증 분석하였다.

  • PDF

Launch Preparation and Launch-and-Early-Operations-Phase for COMS Propulsion System (천리안위성 추진계 발사 준비와 발사 및 초기운용)

  • Han, Cho-Young;Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.207-210
    • /
    • 2011
  • Chollian bipropellant propulsion system is composed of one main engine for orbit transfer and fourteen thrusters for on-station operations. The design and analyses of the propulsion system were carried out in the framework of international collaboration. Following the system integration and testings required, the Chollian was transported to Kourou Space Center in French Guiana and launched successfully. After it separated from the launcher, the propulsion system was initialised automatically. Then three times of main engine firing were successfully performed, and the target obit insertion was accomplished.

  • PDF

Accuracy Analysis of GEO-KOMPSAT-2 Onboard Orbit Generator (정지궤도 복합위성 탑재용 궤도정보 생성기 정밀도 해석)

  • Park, Bong-Kyu;Choi, Jae Dong;Ahn, Sang Il;Kim, Bang Yeop
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.19-25
    • /
    • 2012
  • GEO-KOMPSAT2 shall provide higher quality of image than the COMS and uses star tracker instead of earth sensor, which requires precise onboard orbit information. This requires precise on-ground orbit determination. For COMS, orbit determination is performed using the ranging data obtained from tracking system located in DAEJON. For accurate orbit determination of GEO-KOMPSAT2, KARI is building a secondary tracking station in CHUUK Islands. In this paper, the achievable accuracy of table based onboard orbit parameter generator which interpolates orbit data obtained from on-ground orbit determination using tracking data collected from two ground stations. Two types of approaches have been applied; covariance analysis and numerical analysis. By combining two analysis results, total orbit error has been estimated.

상태 의존 Riccati 방정식 기법을 이용한 우주 발사체의 궤적 최적화

  • Eun, Yeong-Ho;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.3-24.3
    • /
    • 2011
  • 우주발사체를 이용하여 인공위성을 궤도에 올리는 문제에서 가장 중요시해야 할 부분은 임무의 성공, 즉 정밀한 궤도 진입이다. 이것이 만족되어졌을 때, 비용의 최소화 또한 설계 시 중요한 고려사항이 된다. 이 두 가지 문제를 동시에 해결하기 위해선 최적 제어 전략이 필요한데, 통상적으로 이 과정은 발사 전에 최적화 기법 등을 이용하여 계산되고 검증된다. 그러나 기존의 최적화 기법은 대부분 선형 시스템에 적합한 기법들 이고, 우주발사체와 같이 매우 복잡하고 강한 비선형을 가진 운동방정식을 최적화 하려면 많은 계산이 소요된다. 계산 소모 시간을 줄이기 위해서는 선형화 등의 기법이 사용되는데, 그러한 경우 최적 해에 대한 신뢰도가 낮아질 수밖에 없다. 이 논문에서는 그러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 비선형 최적화 기법인 상태 의존 Riccati 방정식 기법 (SDRE)을 이용하여 인공위성을 주어진 궤도에 진입시키는 우주발사체의 최적궤도를 계산하였다. 또한 Hamiltonian 을 이용하여 산출된 궤도의 최적성을 보이고, 목표한 궤도와의 비교를 통해 제어기의 정밀성을 확인하였다.

  • PDF

A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust (순간 및 연속 추력을 이용한 지구-달 최적 전이궤도 설계에 관한 연구)

  • No, Tae-Soo;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.684-692
    • /
    • 2010
  • Based on the planar restricted three body problem formulation, optimized trajectories for the Earth-Moon transfer are obtained. Mixed impulsive and continuous thrust are assumed to be used, respectively, during the Earth departure and Earth-Moon transfer/Moon capture phases. The continuous, dynamic trajectory optimization problem is reformulated in the form of discrete optimization problem by using the method of direct transcription and collocation, and then is solved using the nonlinear programming software. Representative results show that the shape of optimized trajectory near the Earth departure and the Moon capture phases is dependent upon the relative weight between the impulsive and the continuous thrust.

Dynamic Behavior of Sleeper Floating Track System(STEDEF) on Urban Rapid Transit According to Replacement of Resilience Pad (도시철도 침목플로팅궤도(STEDEF) 침목방진패드 교체에 따른 동적 거동)

  • Choi, Jung-Youl;Bong, Jae-Gun;Lee, Jeong-sug;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.335-340
    • /
    • 2020
  • The purpose of this study was to compare the dynamic behavior of STEDEF track that of the sleeper floating track on urban rapid transit according to replacing the resilience pads and analyze the necessity of replacing the resilience pads experimentally. It was analyzed that the uniformity of the track support stiffness could be secured by replacing the used resilience pads with new resilience pads. Therefore, by replacing the used resilience pads, the measured track impact factor was found to be dramatically reduced below the track design standard, and it was analyzed that the track support stiffness could be restored to the design value. As a results, it is possible to restore track support stiffness to the design value and reduce track impact factor by replacing timely resilience pads, which is important to securing durability and improving service life of track components.

A Study on Application of Force-based Track Irregularity Analysis Method (하중기반의 궤도틀림 분석기법 적용에 관한 연구)

  • Hwang, Seon-Kwon;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, shape-based track management by analyzing track irregularity was studied in terms of force-based track irregularity analysis by numerical analysis of wheel-rail interaction force using by the measured vertical irregularity. The effect of the vertical irregularity of the track due to the difference in track types on the wheel-rail interaction force and the track acceleration in the connecting section of the sleeper floating track and the direct fixation track on concrete bed were analyzed. As the results of this study, the measured vertical irregularity was directly affect the vertical wheel load (the wheel-rail interaction force) and the rail acceleration, and it has been demonstrated to change consistently. In this study, the adequacy and necessity of the force-based track irregularity analysis method was verified based on the wheel-rail interaction analysis using the the measured vertical irregularity.

On-board Realtime Orbit Parameter Generator for Geostationary Satellite (정지궤도위성 탑재용 실시간 궤도요소 생성기)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • This paper proposes an on-board orbit data generation algorithm for geostationary satellites. The concept of the proposed algorithm is as follows. From the ground, the position and velocity deviations with respect to the assumed reference orbit are computed for 48 hours of time duration in 30 minutes interval, and the generated data are up-loaded to the satellite to be stored. From the table, three nearest data sets are selected to compute position and velocity deviation for asked epoch time by applying $2^{nd}$ order polynomial interpolation. The computed position and velocity deviation data are added to reference orbit to recover absolute orbit information. Here, the reference orbit is selected to be ideal geostationary orbit with a zero inclination and zero eccentricity. Thanks to very low computational burden, this algorithm allows us to generate orbit data at 1Hz or even higher. In order to support 48 hours autonomy, maximum 3K byte memory is required as orbit data storage. It is estimated that this additional memory requirement is acceptable for geostationary satellite application.

  • PDF