• Title/Summary/Keyword: 굽힘 가공

Search Result 201, Processing Time 0.022 seconds

An integrated process planning, die design and working system for blaking and bending of sheet metal product (박판제품의 블랭킹 및 굽힘 가공을 위한 통합적 공정 및 금형설계와 가공시스템)

  • Kim, J.H.;Choi, J.C.;Kim, C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.155-159
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing (CAD-CAM) of irregular shaped sheet metal product for blanking or piercing and bending operation. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated form plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLIST on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules. the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of unfolding a formed sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacture of blanking or piercing and bending die in this field.

  • PDF

Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History (굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

Outer Bending of a Cold Forged Circle Flange (냉간단조된 후판형 플랜지 돌출부 굽힘성형 공정연구)

  • Kim, D.W.;Shin, Y.C.;Choi, H.J.;Yun, D.J.;Shin, I.C.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.453-458
    • /
    • 2012
  • The flange hub is a main component of an automotive steering system. Dimensional precision of the flange hub is very important for precise control of the steering force. Consequently, the process design for precision forming of a flange hub is required. The teeth of the flange hub are generally formed by bending. In this study, the formability of flange bending was investigated using FE simulations. For the optimum process conditions, the flange is bent by movement of an insert die, and the die angle and bending length are selected as $90^{\circ}$ and 4mm respectively.

Comparison of Friction Coefficients of Sheet Materials in Various Deformation Modes (변형모드별 판재의 마찰특성 비교)

  • Kim, Young-Suk;Kim, Ki-Soo
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 1994
  • Cup drawing test and U-bending test were performed to evaluate the friction characteristics of sheet materials for the different deformation modes involved in stamping process. The coefficient of friction calculated from the each test was compared to that obtained from the draw bead friction test. It was clarified that the cup drawing test could be simply used for evaluating the friction characteristic of sheet material in deep drawing process with high contacting pressure. However the U-bending test is suitable to evaluate the frictional characteristic of sheet material in bending process with low contacting pressure.

  • PDF

Tube Hydroforming Process of Automotive Subframe considering Preforming and Prebending Effect (예비굽힘 및 예비성형공정의 효과를 고려한 자동차 서브 프레임의 관재액압성형)

  • 김헌영;임희택;서창희;이우식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.402-408
    • /
    • 2003
  • Currently tube hydroforming has many studies and applications in manufacturing industry, especially in automotive industry. But tube hydroforming was applied to the automotive component with simple shape. So the manufacturer and the researcher proposed additional processes to form the automotive component with complex shape. It is prebending and preforming. Prebending is to crush bend or rotary draw bend a tubular blank into a shape that facilitates placement into the next forming tool. Preforming is where the prebent tube is crushed into a shape that facilitates placement into the final forming tool. This paper analyzed and compared to the tube hydroforming process to using of general and preformed bending tube, also explained the importance of tube bending and preforming process. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the tube hydroforming operations.

  • PDF

Tube Bending Analysis for Hydroforming Process (Tube Hydroforming을 이한 굽힘 공정해석)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its seberal advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. Tube hydroforming process is divided into prebending process and hydroforming process. Tube bending ins an important factor of the hydroforming process to enable the tube to be placed in the die cavity. This paper presents the theoretical analysis and the simulation results of the tube bending process. With some assumptions, approximate equations are derived to predict the thickness distribution on the cross section and the spring back of the bent tube. Bending simulations are carried out and compared to the analytical and experimental results.

  • PDF

Experimental Study on The Bending Collapse Characteristics of Aluminum Rectangular Tubes (알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰)

  • Kim, Chang-Soo;Chung, Tae-Eun;Kang, Shin-You
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.49-58
    • /
    • 1998
  • In this paper the bending collapse characteristics of 6XXX series aluminum rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment without imposing additional shear and tensile forces. Under the pure bending moment, there occured three kinds of bending collapse modes-local buckling delayed buckling and tensile failure-depending on the a, b, t (depth width thickness) and material properties. Experimental results are compared with the results of finite element method and other methods.

  • PDF

The Effect of Addendum Modification Coefficient on Gear Strength to Planetary Gear Reducer (유성기어 감속기에서 전위계수가 기어 강도에 미치는 영향)

  • Kwak, Ki-Suk;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • Industrial reducer is in general use to Deck Crane. High-precision and high-efficient reducer is minimized the power-loss and energy-loss of a machine. So it contribute the price reduction and life extension. Reducer is usually using the Planetary gear reducer. Planetary gear reducer is composed the sun gear, planet gear, internal gear and casing. Industrial reducer's wear and breakage have a short-life. To solve this problem, it is using the profile-shifted-gear or tooth modification. This study was carried out the effect of addendum modification coefficient on tooth fillet bending strength to planetary reducer. Tooth fillet bending stress is calculate. And all parameter were expressed the function of addendum modification coefficient. And then stress concentration factor of tooth fillet curve was express the function of addendum modification coefficient using comparison between theory and finite element analysis.

Fabrication and forming of metallic sandwich plates with bi-directional corrugated inner structure (두 방향 주름구조를 내부구조로 하는 금속 샌드위치 판재의 제작 및 성형)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.281-284
    • /
    • 2006
  • Metallic sandwich plates with hi-directional inner structure are important new structures for forming applications. Bi-directional corrugated inner structures with less than 25% of relative density are fabricated by piecewise sectional forming process and then bonded with two face sheets by adhesive bonding. Drawing and U-bending experiments have performed and shown that the radius of curvature of sandwich plates is 75mm and sandwich plates are bended 90 degrees without collapse of inner structures. Bi-directional inner structures are suggested to improve formability of sandwich plates for bending and drawing.

  • PDF