• 제목/요약/키워드: 굴착터널

Search Result 1,119, Processing Time 0.025 seconds

Effects of Excavation Methods on Tunnel Deformation Behavior - A Numerical Investigation (굴착공법이 터널변위 거동에 미치는 영향 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Sun-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.289-305
    • /
    • 2006
  • This paper presents the effect of excavating methods on tunnel behavior. As part of this study, it is preliminarily focused on the comparison of two different excavation methods, center diaphram (CD) method and ringcut (RC) method. Especially, the purpose of this research is to study the behavioral mechanism of two tunnels which share the same construction environment but different excavating method. Two numerical analysis models with the same tunnel section and material properties are compared in this study, and they are analyzed by 3D finite element analysis. In each model, face stability, crown displacement, ground settlement, and shotcrete-lining stress are computed, then the general behavior of CD method and RC method is studied. The results indicate that the CD method tends to be effective in controlling tunnel displacement while the RC method is more effective in controlling ground settlement. Design implications of the findings from this study are discussed.

The deformation behavior of soil tunnels reinforced with RPUM and fiberglass pipes (RPUM과 유리섬유 파이프로 막장을 보강한 토사터널의 변형거동)

  • Nam, Gi-Chun;Heo, Young;Kim, Chi-Whan;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2002
  • In this paper, deformation behavior of shallow subway tunnel excavated in weathered soil and reinforcement effects of longitudinal support measures are investigated via three dimensional FDM analysis. Two excavation methods, half-face excavation and full-face excavation, are considered in simulation to study the influences of excavation methods on tunnel deformation behavior. In addition, the reinforcing effects of RPUM and fiberglass pipe are compared. Face extrusion, covergence, preconvergence, and sidewall displacement are investigated to analyze tunnel deformation behavior, and surface settlement is used to analyze the effects of excavation methods and longitudinal supports measures. The simulation results show that half-face excavation induces larger convergence, preconvergence, sidewall displacement, surface settlement than full-face excavation, while full-face excavation induces larger extrusion than half-face excavation. In addition, under same excavation method, all displacements are larger when RPUM is only used for longitudinal support than when RPUM is jointly used with fiberglass pipes.

  • PDF

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

Investigation on Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 통한 터널굴착과 지하수의 상호작용 고찰)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.33-46
    • /
    • 2004
  • This paper presents the effect of groundwater on tunnel excavation. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled finite-element analysis. Based on the results the interaction mechanism between the tunnelling and groundwater is identified for cases having different lining permeabilities. Examined items include pore pressures around lining and lining stresses. Face deformation behavior as well as ground surface movement patterns was also examined. Besides, the effect of grouting pattern was investigated. The results indicated that the effect of groundwater on tunnel excavation increases lining stresses as well as ground movements, and that the tunnel excavation and groundwater interaction can only be captured through a fully coupled analysis. Implementations of the findings from this study are discussed in great detail.

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF

A Study on Ground Behavior during Tunnel Excavation (터널 굴착시 지반거동에 관한 연구)

  • 신종호;유태성
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 1985
  • An extensive program of tunnel instrumentation has been Implemented in the construction of the Seoul Subway Line 3 and 4, in which the NATM was adopted as the main tunnelling technique. Among more than ten instrumented sections in the downtown area, five representative test sections were selected for analysis in this study, with an emphasis on the surface settlement and crown settlement. Variations of the surface and crown settlement. Variations of the governing factors, such as ground conditions, tunnel geometry, and construction conditions are described in this paper. Possible mechanisms for ground deformations occurring at different stages of tunnel construction are formulated, based on overall interpretation of the field observations and data obtained.

  • PDF

A numerical study on the waterproofing effect of Fan Grouting under tunnel excavation (터널 굴착 중 Fan Grouting의 차수 효과에 관한 수치해석적 연구)

  • Moon, Hoon-Ki;Park, Gyung-Wook;Lee, Hyeyoon;Kwon, Seok-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.257-266
    • /
    • 2019
  • Ground water generated under tunnel excavation has a major impact on tunnel construction and stability. Thus, effective waterproof grouting is needed to reduce the inflow of groundwater. Most tunnel designs are applying the Pre Grouting. However there are no propriety analysis for grouting material and waterproof effect. In this study, numerical analysis was performed in order to investigate the effect of waterproof with decrease of coefficient of permeability of the grouting area based on the case of grouting construction.

터널의 라이닝 기계 설비

  • 김성구
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.6-17
    • /
    • 2003
  • 라이닝과 굴착작업은 통상적으로 병행작업이 되며, 라이닝은 시공속도가 빠르기 때문에 공기는 주로 굴착 속도에 지배된다. 그러나 소단면/원형단면 터널에서는 작업 공간확보문제 등 제반조건에 따라 굴착과 라이닝 작업이 분리되어 라이닝 공정이 전체 공기에 커다란 영향을 끼치는 경우도 있다. 라이닝 콘크리트의 타설시기는 계측에 의해 원지반의 변위가 수렴된 것을 확인한 후 하는 것이 원칙이다. 따라서 NATM 에서는 전단면 라이닝이 일반적이다. 본 고에서는 라이닝 설비로서 사용되는 타설설비, 운반설비, 형틀설비의 총 3편으로 나누어 라이닝 기계에 대하여 설명하도록 한다.

  • PDF

A study on soil behaviour due to tunnelling under embedded pile using close range photogrammetry (근거리 사진계측을 이용한 매입말뚝 하부 터널 굴착 시 주변 지반의 거동 연구)

  • Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.4
    • /
    • pp.365-376
    • /
    • 2016
  • Population of urban areas is rapidly increased due to urbanization. This situation leads to lack of surface space. So, underground space has been developed for resolving the problem of congested urban areas. Many studies have researched for this situation. However, previous studies mainly focused on behaviour of structures. Researches about behaviour of soil are lacked. For this reason, this study has investigated interactive behaviour between embedded pile and its surrounding ground due to tunnelling. Soil deformation is observed by the close range photogrammetric method and image processing in the model test. These data are compared with numerical analysis.

An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground (연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구)

  • Oh, Bum-Jin;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.215-231
    • /
    • 2011
  • In this study, the behavior of a shallow 2-arch tunnel during the excavation in the sandy ground containing vertical discontinuity plane was experimentally studied. Load transfer mechanism in the pillar caused by a 2-arch tunnel excavation was observed. The position of the vertical discontinuity plane was varied. Model tests were carried out in the normal construction sequence of 2-arch tunnel. Test results-showed that the load transfer caused by the 2-arch tunnel excavation was concentrated in the discontinuity plane, and was cut by the discontinuity plane, so no load transfer took place above the discontinuity plane. It was also shown that the effect of adjacent tunnel excavation on the pillar load and the ground deformation was greater when excavating the upper half-face of the main tunnel, more than when excavating the lower half-face.