• Title/Summary/Keyword: 굴착시공

Search Result 730, Processing Time 0.025 seconds

An Experimental Study on the Earth Pressure on the Underground Box Structure (지하 박스구조물에 작용하는 토압에 관한 실험적 연구)

  • 김은섭;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.235-246
    • /
    • 1999
  • Some of the underground structures such as subway tunnels are constructed by open cut method, in which the ground is excavated, a structure installed, and after that the excavated space is backfilled. In this case, because of their narrow and constrained boundary conditions, the earth pressure induced by self-weight of the backfilled soil acting on the underground structures is different from that of the classical theory. The vertical and horizontal earth pressures acting on upper slab and side wall of the underground structures constructed by open cut method are affected by the backfill geometry. The laboratory model tests were performed in the conditions of a variety of the shapes of backfill geometry and wall friction. And their results were compared with those from theories. As a result, it was observed that the distribution of the earth pressure acting on the underground structure is affected by the shapes of backfill geometry, the width of backfill, the angle of excavation and the wall friction.

  • PDF

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.

Application of resistivity monitoring with tunnel excavation area (터널 굴착에 따른 전기비저항 모니터링 기술 적용)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Kim, Jung-Ho;Rae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.405-420
    • /
    • 2008
  • Resistivity survey is one of the widely used methods for the investigation of stability of the ground or bedrock around tunnel and is also used as an essential base data for stability and reduction of construction cost through first-hand approximation of rock quality at design step. Generally, the analysis of resistivity survey data is performed by single measurement. When distribution variation of groundwater around a tunnel over time is necessary for maintenance of a tunnel, resistivity monitoring is very useful survey method to grasp distribution variation of groundwater. So we performed the grid line resistivity survey to monitoring resistivity variation for six times. And we also tried to evaluate application possibility of the resistivity monitoring for construction safety through providing detailed information on fault zones.

  • PDF

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.

A Case Study on the Cause and Reinforcement of Railroad Facilities Settlement According to the Ground Excavation (지반굴착에 따른 철도시설물의 침하 원인 및 보강 사례연구)

  • Oh, Beyung-Sam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.85-94
    • /
    • 2012
  • Recent development trend of construction projects in the urban area is the efficient use of insufficient land, however caused to difficult construction conditions because of many adjacent structures. This paper presents the case study that analyzed the ground settlement of railroad structure for the double track railway project of Gyeongui line, adjacent to the high rise building under ground excavating for substructure work, considering interaction of soft ground characteristics. Field survey and measurement works were carried out during construction of station and excavation of high rise building, and field data were analyzed to find the source of settlement of platform and railway. In addition, the soil reinforcement and foundation restoration were performed using in-situ injection method, i.e., D-ROG(Digitalized Restoring On Grout) method which filled the pore of bottom and around of foundation with micro-cement.

The Lateral Earth Pressure Distribution of the Earth Retaining Structure Installed in Colluvial Soil (붕적토에 설치된 흙막이구조물의 측방토압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.433-437
    • /
    • 2008
  • It's essential to build an earth retaining structure at the beginning and end point of a tunnel constructed in a colluvium area. A large scale of colluvial soil may cause a problem to the stability of the excavation ground. An excavation in colluvium has different behavior characteristics from those in a sandy soil due to unstable elements and needs counter measures for it. There are few systematic research efforts on the behavior characteristics of an earth retaining structure installed in colluvial soil. Thus this study set out to collect measuring data from an excavation site at the tunnel pit mouth in colluvium and set quantitative criteria for the safety of an earth retaining structure. After comparing and analyzing the theoretical and empirical earth pressure from the measuring data, the lateral earth pressure distribution acted on the earth retaining wall was suggested.

Numerical simulation study on applicability of electrical resistivity survey at tunnel face (터널 굴착면에서의 전기비저항 탐사 적용성에 관한 수치해석 연구)

  • Yi, Myeong-Jong;Kim, Nag-Young;Lee, Sangrae;Hwang, Bumsik;Ha, Myung Jin;Kim, Ki-Seog;Cho, In-Ky;Lee, Kang-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.279-292
    • /
    • 2022
  • Unexpected anomalies in the geotechnical investigation at design stage may cause problems during tunnel excavation. Therefore, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation in order to prevent tunnel collapse. Despite the fulfillment of an electrical resistivity survey at the tunnel face, the existing electrical resistivity survey program can produce distorted results by the limitation of tunnel modelling. In this background, this study develops a modelling program for an electrical resistivity survey considering the tunnel shape. Numerical simulation and inverse calculation were performed for the electrical resistivity survey in the tunnel using the developed program. As a result, it was proved that the developed program could predict accurately the anomalous object's location and condition ahead of the tunnel face.

An Experimental Study on the Settlement Characteristics of the Corner of Earth Retaining Wall According to the Ground Excavation (지반굴착에 따른 흙막이벽 우각부 모서리 구간의 침하특성에 대한 실험 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Cho, Young-Kweon;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.55-66
    • /
    • 2013
  • The experiment of model soil structures has been executed for the soil retaining wall in various conditions of excavation, in this study, to analyze the behavior of the corner of opening. The ground for experiment has been constituted with the sandy soil of relatively loose density, the construction condition has been divided into the opening length of corner, embedded depth, existence of strut, etc., and the excavation has been carried out for 4 stages in total. The behavior characteristics at the corner of opening area has been verified by concentrate analysis of the displacement of wall and the subsidence of ground surface, for each construction and excavation condition, using the measuring instrument mounted inside the model soil structure. In the result of experiment, it has been analyzed that the opening area of corner is unstable structurally compared to the linear area, as it shows that the wall displacement and subsidence of ground surface have been increased when the opening length of corner gets longer. The longer the embedded depth, ground surface settlement of coner was decreased 40%. To apply deeper embedded depth than designed estimate was an advantage in the safety. As a result of the analysis of coner behavior with added struts, maximum surface settlement and maximum horizontal displacement was evaluated 40% and 30%, respectively. Hence increased embedded depth with the added struts in coner edge was effective in the safety.

A Review of In-Situ Characterization and Quality Control of EDZ During Construction of Final Disposal Facility for Spent Nuclear Fuel (사용후핵연료 최종처분장 건설과정에서의 굴착손상영역(EDZ)의 현장평가 방법 및 시공품질관리 체계에 관한 사례검토)

  • Kim, Hyung-Mok;Nam, Myung Jin;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • Excavation-Disturbed Zone (EDZ) is an important design factor in constructing final disposal facilities for spent nuclear fuel, since EDZ affects mechanical stability including a spacing between disposal holes, and the hydraulic properties within EDZ plays a significant role in estimating in-flow rate of groundwater as well as a subsequent corrosion rate of a canister. Thus, it is highly required to characterize in-situ EDZ with precision and control the EDZ occurrence while excavating disposal facilities and constructing relevant underground research facilities. In this report, we not only reviewed EDZ-related researches carried out in the ONKALO facility of Finland but also examined appropriate methods for field inspection and quality control of EDZ occurrence. From the review, GPR can be the most efficient method for in-situ characterization of EDZ since it does not demand drilling a borehole that may disturb a surrounding environment of caverns. And the EDZ occurrence was dominant at a cavern floor and it ranged from 0 to 70 cm. These can provide useful information in developing necessary EDZ-related regulations for domestic disposal facilities.