• Title/Summary/Keyword: 굴착설계

Search Result 547, Processing Time 0.025 seconds

A prediction of the rock mass rating of tunnelling area using artificial neural networks (인공신경망을 이용한 터널구간의 암반분류 예측)

  • Han, Myung-Sik;Yang, In-Jae;Kim, Kwang-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.

  • PDF

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

Total Management System for Earth Retaining Structures Using Observational Method (지반굴착 흙막이공의 정보화시공 종합관리 시스템)

  • 오정환;조철현;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.51-64
    • /
    • 2002
  • Observational results of ground movement during the construction were very different from those predicted during the analysis of design step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc., however accurately numerical analysis method was applied for prediction of ground movement per the excavation step. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until now, the measurement system restricted by 'Absolute Value Management system'analyzing only the stability of present step has been executed. So, it was difficult to expect the prediction of ground movement fur the next excavation step. In this situation, this study developed 'The Management system TOMAS-EXCAV'consisted of 'Absolute value management system'analyzing the stability of present step and 'Prediction management system'expecting the ground movement of next excavation step and analyzing the stability of next excavation step by 'Back Analysis'. TOMAS-EXCAV could be applied to all the uncertainty of earth retaining structures analysis by connecting 'Forward analysis program'and 'Back analysis program'and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The applicability of TOMAS-EXCAV was confirmed by back analysis selecting two earth retains construction fields.

A Study on the Standard Rock fracture Method Using the Finecker Plus (미진동파쇄기를 이용한 표준암반반쇄굴착공법에 관한 연구)

  • Kim Young-Geun;Kim Il-Jung;Ki Kyung-Chul
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • In this study, the standard particle velocity equations and the equation for calculating specific charge weight with application of rock fracture method using the finecker plus are suggested and the existing equation of fragmentation was transformed into one applicable to finecker plus. Standard rock fracture pattern was designed. Square root scaled equation is $V=345.39(D/\sqrt{W})^{-1.4484$. computable equation to specific charge wei인t is $W_f=(2.3\~2.5)\;f_agdV$, charge weight per hole is 0.54kg, and proportion of diameter 30cm fragmentation is about $48.7\%$. This rock fracture method nay him out to be more excellent than the other methods.

Evaluation of Ground Deformation during Excavation of Vertical Shaft through Centrifuge Model Test (원심모형실험을 통한 원형 수직구 굴착 중 발생하는 지반 변형 평가)

  • Kim, Joonyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • When constructing a cylindrical vertical shaft through the open-cut method, the walls are generally designed to be temporary flexible walls that allow a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the plastic deformation of the surrounding ground. This study simulated a stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model test and evaluated the continuous deformation behaviors of the surrounding ground through digital image analysis.

Stability Analysis by FEM on New Large Shiplock Slopes in Yangtze River (유한요소법에 의한 양쯔강 신설 대수로사면 안정검토)

  • Chen, Jian;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.20-27
    • /
    • 2006
  • 중국 Three Gorges Project의 대수로사면 안정성은 설계와 시공측면에 있어 주요 관심사가 되었다. 사면 굴착으로 인한 제하과정에서 암반은 역학적으로 불안정한 상태에 놓인다. 본 논문은 FEM(2D-3D)를 이용하여 단층 암반 굴착으로 인한 암반사면의 안정성을 평가하였다. 해석결과 굴착 후 수로사면의 양측 수직벽과 분리울타리의 중간 상부에서 인장응력과 전단손상영역이 주로 발생하였다. 해석결과를 토대로 대규모 사면활동에 대한 안정성을 확인하였으나 시공단계에서 국부적 사면활동을 방지하기 위한 록볼트와 록앵커 등의 보강이 필요한 것으로 검토되었다.

  • PDF

기술현황분석 : 고속 터널굴착과 터널보링머신 동향

  • Jang, Su-Ho;Lee, Yong-Beom
    • 기계와재료
    • /
    • v.21 no.4
    • /
    • pp.96-105
    • /
    • 2010
  • 도로 및 철도는 차량의 고속화와 신속한 물류의 유통을 위해 직선 및 수평화가 절실하게 요구되며, 국내 건설구간의 약 50~70%가 산악지형으로서 터널공사가 필수적으로 요구된다. 국내터널굴착은 주로 발파에 의한 NATM(New Austrian Tunneling Method)으로 공사가 이루어지고 있으나, 굴착효율이 낮으며 안전사고의 위험성이 높다. 해외에서는 급속한 시공을 위하여 TBM(Tunnel Boring Machine)의 적용 사례가 증가하고 있다. 그러나 국내에는 TBM에 대한 연구가 전무한 상태이고, TBM 터널의 설계 시공 기술과 경험이 미흡하다. 최근 대도시의 지하터널과 장대터널의 수요가 증대되어 TBM터널시공 기술과 TBM장비의 국산화가 절실하게 요구되고 있다. 본고에서는 국내외 주요 TBM 시공현황과 전망을 정리하여 TBM 터널 기술의 확보가 매우 시급함을 상기시키고자 하였다.

  • PDF

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.