• Title/Summary/Keyword: 굴절파

Search Result 319, Processing Time 0.027 seconds

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF

Reliability Analysis of Wave Overtopping over a Seawall (호안에서의 월파에 대한 신뢰성 해석)

  • Oh Jung-Eun;Suh Kyung-Duck;Kweon Hyuck-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.69-83
    • /
    • 2006
  • A Level 3 reliability analysis has been performed for wave run-up and overtopping on a sloping seawall. A Monte-Carlo simulation was performed considering the uncertainties of various variables affecting the wave overtopping event. The wave overtopping probability was evaluated from the individual wave run-up by using the wave-by-wave method, while the mean overtopping rate was calculated directly from the significant wave height. Using the calculated overtopping probability and mean overtopping rate, the maximum overtopping volume was also calculated on the assumption of two-parameter Weibull distribution of individual wave overtopping volume. In addition, by changing wave directions, depths, and structure slopes, their effects on wave overtopping were analyzed. It was found that, when the variability of wave directions is considered or the water depth decreases toward shore, wave height become smaller due to wave refraction, which yields smaller mean overtopping rate, overtopping probability and maximum overtopping volume. For the same mean overtopping rate, the expected overtopping probability increases and the expected maximum overtopping volume decreases as approaching toward shore inside surfzone.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF

Optical Analysis for Designing a Planar Solar Concentrator Based on Light Guide System (광도파 원리의 평면형 태양광 집광기 설계를 위한 광학해석)

  • Han, Jong-Ho;Kim, Jong-Sun;Hwang, Chul-Jin;Yoon, Kyung-Hwan;Kang, Jeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • Recently, an optics-based concentrator for solar concentration has been a key issue in development of photovoltaic systems. In the present study, a new, simple, easily producible planar concentrator based on a light guide system is proposed. In this device, solar light is concentrated by microprism optical patterns guiding the light, mainly through total reflection and refraction. The main design variables of the concentrator are the geometric concentration ratio ($R_c$) and the ${\Theta}_1$ and ${\Theta}_2$ of the microprism pattern. Ray tracing was simulated using commercial software, SPEOS, and the optical efficiencies of the light guide solar concentrator were predicted in each case. The predicted maximum optical efficiencies are 65.60%, 54.78%, and 46.78%, respectively, for $R_c$ values of 4, 5, and 6. The variation of the optical efficiencies according to ${\Theta}_1$, ${\Theta}_2$, and the incline angle of the incident light were predicted.

Reconstruction of the Volcanic Lake in Hanon Volcano Using the Spatial Statistical Techniques (공간통계기법을 이용한 하논화산의 화구호 복원)

  • Choi Kwang-Hee;Yoon Kwang-Sung;Kim Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.391-403
    • /
    • 2006
  • The Hanon volcano located in the southern pan of Cheju Island, Korea has a wetland in its crater being used as a farmland. Previous researchers presumed this wetland was a maar lake in the past. Based on the seismic refraction method, the wetland sediment layer was estimated between 5 to 14 m deep, which is mostly in accordance with previous researches. However, this shows only the depths at some sites, not representing the whole spatial distribution. This study is an attempt to reconstruct the volcanic lake in Hanon crater by applying the spatial statistical techniques based on the depth information from the seismic survey and known data. The procedure of reconstruction is as follows: First, the depth information from the seismic survey and known data were collected and it was interpolated by IDW and Ordinary Kriging method. Next, with the interpolation map and the present DEM the paleo DEM was constructed. Finally, using the paleo lake level on core data, the boundary of volcanic lake was extracted from the paleo DEM. The reconstructed lake resembles a half-moon in the north of the central scoria cone. It is estimated that the lake was 5 m deep on average and 13 m deep at the deepest point. Although there are slight differences according to the interpolation techniques, it is calculated that the area of the lake was between 184,000 and $190000m^2,$ and its volume approximately $869,760m^3$. Because of the continuous deposition processes after the crater formation, the reconstructed volcanic lake would not indicate an actual lake at a specific time. Nevertheless, it offers a significant clue regarding the inner morphology and evolution of the crater.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

The Clinical Examination of Netspeg Lens for Good Visual Acuity (시력 개선을 위한 Netspeg 렌즈의 임상적 검증)

  • Kim, Douk-Hoon;Bae, Han-Young;Kim, Sun-Tae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.281-291
    • /
    • 2006
  • The aim of this study was performed the clinical test using Netspeg lens for good visual acuity on subjects with abnormal refraction status. The subjects of one hundreds adults (fifty males, fifty females, mean=21 years, range=19 to 24) were recorded. The subjects were researched the history including the systemic health, medication, genetics, allergy, systemic disease and ocular disease. The refraction test was recorded the monocular and binocular using objective method. Visual acuity was performed the binocular status using the Netspeg lens and CR-39. Stereopsis test was performed the titmus fly and TNO at near distance using Netspeg lens and CR-39. The P-VEP test was used the 16 pattern size(Bausch Lomb, production in USA) with three channels. Also Subjects viewed the p-vep stimulus with binocular vision through the corrected visual acuity using the Netspeg lens and CR-39. The contrast sensitivity test was performed the contrast sensitivity chart(pelli-Robertson, USA) at 1m distance using the Netspeg lens and CR-39. The ultrastructure of surface on the Netspeg lens and CR-39 was observed the SEM(JMS-5800, made in Japan). The results of this study was as follows: 1. In corrected visual acuity of abnormal refraction using the Netspeg lens and CR-39, the Netspeg lens wearer were acquired the good visual field and clear visual acuity comparative to CR-39 wearer in the subject vision test. however the comfort of visual acuity was similar results in the Netspeg lens and CR-39. Also the subjects of Netspeg lens wearer was good visual acuity more than CR-39 wearer and in the analysis of P-VEP, the amplitude of wave on Netspeg lens used appears to be better through the CR-39(p>0.5). Besides, on the contrast sensitivity, the Netspeg lens wearer was good results than CR-39. The value on stereopsis with TNO by Netspeg lens wearer was better than CR-39 in results. However, in the stereopsis test with Titmus, the Netspeg lens and CR-39 wearer was similar results. 2. The ultrastructure of Netspeg lens surface was the smooth and fine shape more than CR-39. Also, Netspeg lens have a fine line structure in ultrastructure. In conclusion, the results of this study conformed that the surface ultrastructure of Netspeg lens used is more specific pin hole design structure than CR-39. This study indicated that the vision of Netspeg lens used have a better than CR-39 in the corrected visual acuity for abnormal refraction eye. Therefore, In this paper, we suggested that the ultrastructure and line structure of Netspeg lens was related to good visual function. However the visual function of the aspheric Netspeg and ultra waterproof Netspeg lens was similar results.

  • PDF

Characteristics of Silicon Rich Oxide by PECVD (PECVD에 의한 Sirich 산화막의 특성)

  • Gang, Seon-Hwa;Lee, Sang-Gyu;Park, Hong-Rak;Go, Cheol-Gi;Choe, Su-Han
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.459-465
    • /
    • 1993
  • By making the inter-metal PECVD $SiO_2$ as a Si rich oxide under the SOG, the hydrogen and water related diffusants could be captured a t SI dangling bonds. This gettering process was known to prevent the device characteristics degradations related to the H, $H_20$. The basic characteristics of Si rich oxide have been studied according to changing high/low frequency power and $SiH_4/N_2O$ gas flow ratio in PECVD. As increase in low frequency power, deposition rate decreased but K.I. and compressive stress increased. Decrease of the water peaks of FTIR spectra at the wave number range of 3300~3800$\textrm{cm}^{-1}$' also indicated that intensty the films were densified. As increase in SiH, gas flow rate, deposition rate, R.I. and etch rate increased while compressive stress decreased. F'TIK spectra showed that peak intensity corresponding to Si-0-Si stretching vibration decreased and shifted to the lower wave numbers. But AES showed that Si dangl~ng bonds were increased as a result of lower Si:O(l: 1.23) ratlo inthe Si rich oxide as compared to Si : O(1 : 1.98) ratio of usual oxide.

  • PDF

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

An Implementation of Stable Optical Security System using Interferometer and Cascaded Phase Keys (간섭계와 직렬 위상 키를 이용한 안정한 광 보안 시스템의 구현)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we proposed an stable optical security system using interferometer and cascaded phase keys. For the encryption process, a BPCGH(binary phase computer generated hologram) that reconstructs the origial image is designed, using an iterative algorithm and the resulting hologram is regarded as the image to be encrypted. The BPCGH is encrypted through the exclusive-OR operation with the random generated phase key image. For the decryption process, we cascade the encrypted image and phase key image and interfere with reference wave. Then decrypted hologram image is transformed into phase information. Finally, the origianl image is recovered by an inverse Fourier transformation of the phase information. During this process, interference intensity is very sensitive to external vibrations. a stable interference pattern is obtained using self-pumped phase-conjugate minor made of the photorefractive material. In the proposed security system, without a random generated key image, the original image can not be recovered. And we recover another hologram pattern according to the key images, so can be used an authorized system.

  • PDF