• Title/Summary/Keyword: 굴뚝

Search Result 163, Processing Time 0.023 seconds

Performance Analysis of Passive Solar Chamber System (자연형 태양 챔버 시스템의 성능 분석)

  • Jang, Hyang-In;Kim, Byung-Gu;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.57-65
    • /
    • 2011
  • This study proposes a Passive Solar Chamber System (PSCS) as a passive method for reduction of building energy consumption. Through numerical analysis, the study quantitatively analyzes system performance and aims to provide foundational data for system design. For this purpose, the study configures different system operation modes seasonally and also computes thermal and ventilation performance of the system in accordance with design factors(solar radiation, air channel height and distance). System and ventilation efficiency increases along with increase in solar radiation and air channel distance; however, as the air channel height increases, the efficiencies showed a tendency to decrease. Upon installation of PSCS, an average of $98.23W/m^2$ of heat flux was introduced in the daytime for the month of January in comparison to walls with no PSCS installed. For the month of August, natural ventilation of $56.68m^3/h$ was shown to be supplied to the room.

Sizing Method and Seasonal Performance of Passive Solar Chamber System (자연형 태양 챔버 시스템의 계절별 성능 및 크기 결정 방법)

  • Jang, Hyang-In;Kim, Byung-Gu;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • This study focused on the application of the Passive Solar Chamber System (PSCS) as proposed by a previous study. The seasonal performance and sizing method for the system were investigated for a feasibility of the PSCS in Korean climate. For seasonal performance, heat and ventilation performances of the PSCS were analyzed for the months of January and August. This study proposed a simple configuration method in which the designer can decide on the system size at the preliminary design stage by using system efficiency, overall heat transfer coefficient transmission, monthly solar radiation, highest and lowest temperatures. During weeks that require heating, the system showed to acquire a daily average heat amount of $860.28Wh/m^2$ day. For cooling periods, the system was computed to supply a daily average natural ventilation of $1,360.2m^3/day$ to the room. Moreover, proposed sizing method and the overall computation results showed a 6.04~7.24% error of assessment.

Vestibule Smoke Control Considering the Stack Effect and the Opening of the Outside Door (굴뚝효과와 외부출입문 개방을 고려한 부속실 제연)

  • Yongkwang Kim;Zudal Son;Seoyoung Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • The purpose of this study is to improve the stack effect of the staircase and the failure to take into account the opening of the outside door of the staircase, which are the disadvantages of the existing smoke control only vestibule. As a result of the study, the new vestibule and the staircase simultaneous smoke control are equipped with an exhaust flap damper with an effective opening area of about 0.25 m2 in the upper part of the staircase, and a ventilator-type air supply fan of about 5 m3/s in the lower part, and take measures to prevent overpressure in the staircase. If you use the new simultaneous smoke control method of the vestibule and staircase, you can achieve the following effects. First, it is possible to open the external entrance door. Second, it can reduce the stack effect. Third, the staircase door closes automatically without fail. And a new method of preventing overpressure was proposed for the vestibule.

Study Improvement of the Evacuation Performance in a Double-Skin Structure (이중외피 구조 건축물의 피난성능 개선에 관한 연구)

  • Gu, Seon-Hwan;Song, Young-Joo
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • This study examined an effective way of measuring the evacuation performance in buildings, which are applied to a double skin facade through an evaluation of the escape safety. Buildings with a double skin facade appeared to have a faster combustion expansion speed for the upper floor if a fire occurs. Moreover, a double skin facade is more difficult to escape safely than a general building construction because of the limited design standards. Accordingly, this study suggested virtual modeling including single emergency stairs and alarm systems considering the risk in each structure of buildings. These results showed that box-type double skin, corridor access type, shaft-box type, and multistory facade systems showed a 26.4%, 29.1%, 23.4%, and 26.3% increase in evacuation performance, respectively, as well as securing the safety of occupants.

A Study on the Natural Ventilation Force in Tunnels (터널형 지하공간내의 자연환기력 분석)

  • Lee, Chang-Woo;Park, Hong-Chae
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.226-235
    • /
    • 2009
  • Force induced by the natural ventilation in tunnel is likely to generate adverse influences on the airflow during the normal operation and create even more unfavorable circumstances during the tunnel fire. The influence of the natural ventilation is required to take into account in designing and operating the ventilation as well as safety systems. The magnitude of natural ventilation force depends on a variety of factors associated with the topographical, meteorological and physical features of tunnel. Unfortunately, at this moment those are difficult to quantify and none of the countries has suggested its estimation method in the design guideline. This study aims at quantifying the natural ventilation force at a local highway tunnel by three different methods. The first method employes direct measurement of the pressure at portals, while the second applies a stepwise approach to eliminate the piston effect ahead of deriving the natural ventilation force and the third method uses the concept of barometric barrier.

Review on the Management for Radioactive Effluent and Methodology for Setting of Derived Release Limits at Pressurized Heavy Water Reactors in Korea (중수로원전 방사성유출물 관리와 유도배출한계 설정방법에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.172-177
    • /
    • 2010
  • The radioactive effluents from pressurized heavy water reactors (PHWRs) are relatively larger than those from pressurized water reactors (PWRs). Futhermore, radioactive effluents from PHWRs are released continuously. Thus, the discharge of radioactive effluents is strictly controlled. To do this, radiation detectors are installed at stacks of reactor buildings to monitor the concentration of radioactive effluents in real-time. Derived release limits (DRLs) of annual discharge are also set up for each radionuclide and effluents are rigidly controlled not to exceed those limits. In this paper, the discharge process of radioactive effluents, the standard for establishment of DRL and its methodology, and currents status for PHWRs were reviewed.

A Study on Design Approach for the Localization -Focused on Theme Park (지역특성화를 위한 디자인적 접근방안 -테마공원을 중심으로-)

  • 박노석;정지원;이규백
    • Archives of design research
    • /
    • v.13 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • Industrialization and Urbanization have given rise to ill effects in areas sudl as standardization and simplification. As a result, eadl area has developed abnormally losing its own uniqueness. During globalization and localization in country, the diverse economic cultural activities adopting the area,s uniqueness are the starting point for development and widening its identity. Excavating and developing local cultural industries are urgent considering the importance of economic profits not having environmental problems. Factors identifying an area's characteristics may be dassified as formation works of urban identity, landscape design. cultural industry, developing local areas, etc. This study was a concrete approadl to compose and analyze domestic and foreign cases factors. For practical analysis and application on the Ulsan,s characteristics from a design point of view, way of local development and cultural industry in Ulsan have been researdled.

  • PDF

The Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층 공동주택 국소배기용 입상덕트의 배기성능평가)

  • Kwon, Yong-Il;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

Heat Flow Characteristics on Type of Heat Transfer Plate for White Smoke Reduction under Uniform Flow Condition (균일유동에서 백연저감용 전열판 형태에 대한 열유동 특성)

  • Son, Jun;Cha, Jae Min;Wang, Zhen Huan;Kwon, Young Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.591-596
    • /
    • 2016
  • Numerical analyses were performed on the heat flow characteristics of a heat transfer plate with six different shapes (basic, rectangle, triangle, wave type) to reduce the level of white smoke at a stack. In this study, to examine the heat transfer performance (heat transfer capacity, pressure drop, turbulence kinetic energy, heat transfer coefficient) on the heat transfer plates, simulations were conducted using the commercial computational fluid dynamics software, ANSYS CFX Ver.14 under uniform flow conditions. The thermal flow phenomenon in a channel with six heat transfer plates could be predicted adequately under uniform flow conditions. The heat transfer capacity, pressure drop, turbulence kinetic energy, and heat transfer coefficient were affected by the flow rate, aspect ratio and plate shape. These results provide guidelines to design an effective heat exchanger with the wave type to reduce white smoke.

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct (기울어진 덕트 내 헬리컬 코일의 자연대류 열전달)

  • Park, Joo-Hyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.