• Title/Summary/Keyword: 군집 특성

Search Result 1,998, Processing Time 0.035 seconds

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea 1. Bacteria and Heterotrophic nanoflagellates (경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소 편모류)

  • 양은진;최중기;현정호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.44-57
    • /
    • 2003
  • Seasonal variations of bacterial abundance and production, heterotrophic nanoflagellate (HNF) abundance and HNF ingestion rates on bacteria using FLB together with environmental variables were investigated at intervals of a month in Kyeonggi Bay from December 1991 to November 1998. Bacterial abundance and production ranged from 0.38$\times$10$^{9}$ ~ 3.25$\times$10$^{9}$ cells 1$^{-1}$ (average 1.19$\pm$0.69$\times$10$^{9}$ cells 1$^{-1}$ ) and from 1.51 to 20.4 cells 1$^{-1}$ h$^{-1}$ (average 6.04$\pm$ 1.88$\times$10$^{6}$ cells 1$^{-1}$ h$^{-1}$ ), respectively. Bacterial abundance and production showed no differences at the high tide and low tide, and bacterial abundances were not different with depth, but bacterial production decreased with depth. Seasonal variation of bacterial abundance showed almost similar fluctuation pattern to those of DOC (dissolved organic carbon). HNF abundances ranged from 388 to 4,374 cells ml$^{-1}$ (average 1,344$\pm$130 cells ml$^{-1}$ ), were high in March, April, July and August. HNF abundance showed no difference between the high tide and low tide, and was not different with depth. The ingestion rates of HNF on bacteria were 1.0 to 6.3$\pm$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ (average 3.12$\pm$0.55$\times$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ ), resulting ingestion rates of HNF removed 19.4 to 141.4 %(average 62.3$\pm$12.0%) of bacterial production. Ingestion rates and grazing pressure of HNF on bacteria showed high correlation with HNF abundance. Although we cannot exactly discussion about seasonal variation of bacteria community in this study area where physical and chemical parameters were very complex, the results indicate that bacterial abundance and production were mainly controlled by resources supply as dissolved organic carbon and chlorophyll-a(bottom-up) except March which bacterial abundance and production uncoupled chlorophyll-a because of low dissolved organic carbon and low temperature, and were controlled by HNF grazing pressure(top-down) in the warm seasons except the winter.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Biological Stream Health and Physico-chemical Characteristics in the Keum-Ho River Watershed (금호강 수계에서 생물학적 하천 건강도 및 이화학적 특성)

  • Kwon, Young-Soo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.145-156
    • /
    • 2006
  • The objective of this study was to evaluate biological health conditions and physicochemical status using multi-metric models at five sites of the Keum-Ho River during August 2004 and June 2005. The research approach was based on a qualitative habitat evaluation index (QHEI), index of biological integrity (IBI) using fish assemblage, and long-term chemical data (1995 ${\sim}$ 2004), which was obtained from the Ministry of Environment, Korea. For the biological health assessments, regional model of the IBI in Korea (An,2003), was applied for this study. Mean IBI in the river was 30 and varied from 23 to 48 depending on the sampling sites. The river health was judged to be "fair condition", according to the stream health criteria of US EPA (1993) and Barbour et al. (1999). According to the analysis of the chemical water quality data of the river, BOD, COD, conductivity, TP, TN, and TSS largely varied epending on the sampling sites, seasons and years. Variabilities of some parameters including BOD, COD, TP, TN, and conductivity were greater in the downstream than in the upstream reach. This phenomenon was evident in the dilution by the rain during the monsoon. This indicates that precipitation is a very important factor of the chemical variations of water quality. Community analyses showed that species diversity index was highest (H=0.78) in the site 1, while community dominance index was highest in the site 3, where Opsariichthys uncirostris largely dominated. In contrast, the proportions of omnivore and tolerant species were greater in the downstream reach, than in the upstream reach. Overall, this study suggests that some sites in the downstream reach may need to restore the aquatic ecosystem for better biological health.

Habitat Classification and Distribution Characteristic of Aquatic Insect Functional Feeding Groups in the Geum River, Korea (금강 수계 서식지 유형분류 및 수서곤충 섭식기능군 분포특성)

  • Park, Young-Jun;Kim, Ki-Dong;Cho, Young-Ho;Han, Yong-Gu;Kim, Yeong-Jin;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.691-709
    • /
    • 2011
  • This study was performed to classify habitat types depending on environmental factors and to find out distribution characteristics of functional feeding groups of aquatic insects which were collected at that habitat types. Field survey was conducted twice in a year for every spring and fall from 2007 to 2008 for 38 sites in the Geum River. During the field survey 15 environmental factors were measured at each 38 sites and analyzed by similarity analysis method to classify habitat types. The result of similarity analysis showed that the 38 sites could be grouped into 7 classes like as C1 and C3 class belong to Head water(HD), C2 and C4 and C5 class belong to Middle stream(MS), C6 and C7 class belong to Large River(LR) based on euclidean distances 4. And also, we could extract the main environmental factors affecting the classification of habitat types such as Stream Width and Elevation of physical environmental factors, Water Temperature, Conductivity and DO of chemical environmental factors, percentages of Sand, Silt and Gravel of substrate factors. Total 142 species of aquatic insects in 46 families, 9 orders were collected during the field surveys and the occurrence number of species and individuals showed high correlation with the Velocity factor and the percentage of Sand factor of each habitat types. In addition, correlation analysis between functional feeding groups and environmental factors represented that (1) Filtering-collectors(FC) affected by Velocity, Stream Width and Silt, (2) Gathering-collector(GC) affected by Velocity, (3) Predator(P) affected by Elevation, Velocity, Boulder, Conductivity and Sand, (4) Plant-piecer(PP) affected by Water Width and Silt, (5) Scraper(SC) affected by Elevation and Conductivity, (6) Shredder(SH) affected by Elevation, Boulder, DO, pH, Conductivity and Water Temperature respectively. As a result of this study, Elevation, Stream Width, Velocity, Conductivity, Water Temperature and percentage of Sand factors which were deduced by stepwise multiple regression analysis had correlations($r{\geqq}0.600$, p<0.01) with biota community inhabitation. Therefore these six environmental factors were regarded as major environmental factors that might affect highly the distribution of functional feeding groups in stream ecosystem of the Geum River.

Nutritional Properties by Composting Process of Algae Biomass as Soil Conditioner (조류 바이오매스를 이용한 토양개량제의 퇴비화 과정에 따른 영양성분 특성)

  • Ahn, Chang-Hyuk;Lee, Saeromi;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.604-615
    • /
    • 2019
  • In this study, we produce a new type of the algae soil conditioner(ASC) using discarded algae biomass through a composting process and evaluate its nutritional characteristics. As the main ingredient, the ASCs used algae biomass collected through the coagulation-floating method and made by adding a variety of additional supporting materials (sawdust, pearlite, oilcake etc.). ASCs were divided into 0% in blank, 11.7% in ASC1, 21.6% in ASC2, 37.6% in ASC3, 59.5% in ASC4, and composted during 127 days. ASCs showed a sharp increase in temperature by aerobic microbial reaction, and 6~7 high and low temperature peaks were observed. As a result of physicochemical analysis, mineralization proceeded according to decomposing the organic matter and there was a marked increase not only in macronutrients (TN, P2O5, K2O), but also in secondary macronutrients (CaO, MgO). The microbial community change was found in stage 1 (bacteria, filamentous fungi) → stage 2 (actinomycetes, bacteria) → stage 3 (Bacillus sp.), depending on the maturation process. It was estimated that microbial transition was closely related to temperature change and nutritional behavior. The quality of soil conditioner can be determined according to the maturity of compost process, and it was determined that effective microbial activity could be induced by controlling algae biomass below 59.5% in this study. In conclusion, we found out the possibility of manufacturing and utilizing soil conditioner recycled algae biomass and if further technological development is made on the basis it can be used as an effective soil conditioner.

Limnological Characteristics and Influences of Free-floating Plants on the Woopo Wetland during the Summer (하계우포습지의 육수학적 특성 및 부유수생식물의 영향)

  • Joo, Gea-Jae;Kim, Gu-Yeon;Park, Sung-Bae;Lee, Chan-Woo;Choi, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.273-284
    • /
    • 2002
  • During January 1998-October 1999, the impact of free-floating plants (FFP) on limnology of the wetland ecosystem was evaluated through the investigation of physicochemical characteristics of the Woopo Wetland along with in situ manipulation experiments of aquatic plants. Flooding events occurred in the wetland during the summer period (Jun.-Aug.) and water levels rose to 2-3 m due to precipitation from the catchment and inflow from the main channel of the Nakdong River. Physicochemical parameters and plankton dynamics in the wetland during the summer were greatly influenced by floods and growth of free-floating plants. Dissolved oxygen (Jun.-Sept., 4.5${\pm}$2.5 mg/1; Oct.-May, 8,1 ${\pm}$4.0 mg/1) and pH (Jun.-Sept., 6.9${\pm}$0.4; Oct.-May,7.4${\pm}$0.8) levels were significantly lower during the summer than any other seasons. Three types of enclosure experiments (100 L, treatments with floating plants, screened and opened) were conducted under the presence and absence of sediment for 15 days in the 1999 summer. The treatments with sediment had higher levels of nutrient concentrations than those of the others. Among the treatments with sediment, nutrient concentrations in the treatments with free-floating plants were higher than the others. Zooplankton communities in each treatment showed a similar variation, although the scale of zooplankton densities differed. Rotifer community dominated the zooplankton at the initial phase of the experiment, but decreased drastically along with an increase of cladoceran and copepod communities. In conclusion, low levels of dissolved oxygen and pH in the Woopo Wetland during the summer seemed to be caused by a proliferation of free-floating plants and active decomposition process at the bottom of the sediment.

A Study on the Botany of New Natural Habitats of Abeliophyllum distichum Nakai in the Byeonsanbando National Park (변산반도국립공원 내 새로운 미선나무 자생지의 식물학적 연구)

  • Oh, Hyun Kyung;Soh, Min Seok;Rho, Jae Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.4-25
    • /
    • 2011
  • This study was performed in 2010 to examine the flora and vegetation structure and chemical characteristics of soil in the growing community of Abeliophyllum distichum, located in the Byeonsanbando National Park. This Abeliophyllum distichum community has more individual numbers in Cheongrim-ni and Jungkye-ri, Byeonsan-myeon, and Buan-gun area, which is designated as a Natural Monument (No. 370), and also where the habitat conditions for Abeliophyllum distichum is more favorable. The authors recorded 100 taxa with 45 families, 82 genus, 93 species, 4 varieties, and 3 forms. Among them, species such as Abeliophyllum distichum (critically endangered), Asarum maculatum (near threatened) and Chionanthus retusa (near threatened), which are categorized as rare plants, were recorded. According to the list of Korean endemic plants, 4 taxa, particularly Philadelphus schrenckii, Abeliophyllum distichum, Weigela subsessilis, and Lonicera subsessili, were recorded. The community of Abeliophyllum distichum is located in the northwest slope of Baekcheon watershed and the community is comprised of healthy soil. The community structure was classified into three: the Castanea crenata community, Zelkova serrata community, and Quercus serrata community. The Castanea crenata community is composed of the Cornus walteri, Platycarya strobilacea, Zelkova serrata, Rhamnella frangulioides, arranged in terms of importance percentage. The Zelkova serrata community is composed of Celtis sinensis, Quercus aliena, Styrax japonica, and Acer pseudo-sieboldianum, also according to importance percentage. As for the Quercus serrata community, it is composed of Quercus variabilis, Castanea crenata, and Prunus sargentii, also arranged in terms of importance percentage. The importance percentage of Abeliophyllum distichum is 6.6% in the Castanea crenata community, 5.6% in the Zelkova serrata community and 5.1% in the Quercus serrata community. Moreover, in order of chemical characteristics of soil pH, electrical conductivity, available phosphoric, organic matter, and exchangeable cation (K, Ca, Mg) are analyzed. The No. 3 site was relatively higher than other districts of the same chemical characteristics of soil.

Characteristics of Herbaceous Vegetation Structure of Barren Land of Southern Limit Line in DeMilitarized Zone (비무장지대 남방한계선 불모지 초본식생구조 특성)

  • Yu, Seung-Bong;Kim, Sang-Jun;Kim, Dong-Hak;Shin, Hyun-Tak;Bak, Gippeum
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.135-153
    • /
    • 2021
  • The demilitarized zone (DMZ) is a border barrier with 248 kilometers in length and about 4 kilometers in width crossing east to west to divide the Korean Peninsula about in half. The boundary at 2 kilometers to the south is called the southern limit line. The DMZ has formed a unique ecosystem through a natural ecological succession after the Armistice Agreement and has high conservation value. However, the use of facilities for the military operation and the unchecked weeding often damage the areas in the vicinities of the southern limit line's iron-railing. This study aimed to prepare basic data for the restoration of damaged barren vegetation. As a result of classifying vegetation communities based on indicator species, 10 communities were identified as follows: Duchesnea indica Community, Hosta longipes Community, Sedum kamtschaticum-Sedum sarmentosum Community, Potentilla anemonefolia Community, Potentilla fragarioides var. major Community, Prunella vulgaris var. lilacina Community, Dendranthema zawadskii var. latilobum-Carex lanceolata Community, Dendranthema zawadskii Community, Plantago asiatica-Trifolium repens Community, and Ixeris stolonifera-Kummerowia striata Community. Highly adaptable species can characterize vegetation in barren areas to environment disturbances because artificial disturbances such as soil erosion, soil compaction, topography change, and forest fires caused by military activities frequently occur in the barren areas within the southern limit line. Most of the dominant species in the communities are composed of plants that are commonly found in the roads, roadsides, bare soil, damaged areas, and grasslands throughout South Korea. Currently, the vegetation in barren areas in the vicinities of the DMZ is in the early ecological succession form that develops from bare soil to herbaceous vegetation. Since dominant species distributed in barren land can grow naturally without special maintenance and management, the data can be useful for future restoration material development or species selection.