Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.310-312
/
2001
최근 관심의 대상이 되고 있는 CRM, eCRM에는 데이터 마이닝 기법이 핵심 기술로 이용되고 있다. 이러한 데이터 마이닝 기법가운데 가장 널리 사용되고 있는 군집화는, 데이터 집합을 유사한 데이터의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 것이다. 그런데 기존의 군집화 알고리즘은 사전에 군집의 개수를 미리 결정해줘야 하고 잡음에 민감하여 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 이러한 문제점의 개선을 위해, 본 논문에서는 유사도 개념을 적합도 함수로 사용하는 유전자 알고리즘을 적용한 군집화 기법을 제안하다. 특히 적합도 하수에 사용된 군집의 대표값 개념은 요약 정보만을 이용하여 계산속도가 향상되기 때문에 대용량 데이터를 다루는 마이닝에 적합할 것을 기대된다.
Journal of the Korea Institute of Military Science and Technology
/
v.2
no.1
/
pp.90-100
/
1999
유전자 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한(Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지는 경우, (2)수학적으로 표현이 불가능하거나 어려운 경우, (3)목적함수에 교란 항(disturbance term)이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 유전자 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 군집성 분석(cluster analysis)을 이용하여 군집화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 단순 유전자 알고리즘에 의한 최적화보다 훨씬 향상된 탐색 알고리즘을 제안하였다. 반응표면의 형태가 정형화한 테스트 함수의 형태로 나타난다고 가정한 경우에 대하여 몬테 칼로 시뮬레이션을 통하여 본 알고리즘을 적용하여 평가하고 분석하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.263-266
/
2002
데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.277-280
/
2003
현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 다라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내어 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려한다.
Proceedings of the Korea Society for Simulation Conference
/
1998.10a
/
pp.62-64
/
1998
유전 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한 (Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지거나 (2)수학적으로 표현이 불가능하거나 어렵거나 (3) 목적함수에 교란항이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 군집성 분석(cluster analysis)을 이용하여 군집화함으로써 유전 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 그룹화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 최적값에 근접시킬 수 있는 탐색 알고리즘을 제안하였으며, 시뮬레이션의 출력이 특정한 테스트 함수의 형태로 나타난다고 가정한 경우에 확률적으로 나타나는 시뮬레이션 모델의 출력을 최대화하는 문제에 대하여 적용하고 분석하였다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.792-795
/
2002
현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2006.06a
/
pp.463-484
/
2006
본 연구는 많은 기업들이 SCM의 중요성을 인식하고 도입하여 활용을 하고 있는 정보시스템의 발전 단계에서 공급사슬에 참여하고 있는 기업이 어떻게 SCM을 활용하고 있는지에 초점을 둔 연구라 할 수 있다. 기존 연구에서 도출한 SCM 활용 목적에 대한 설문 항목을 중심으로 기업이 활용하고 있는 SCM 활용 패턴을 도출하였다. 군집 분석 방법을 활용하여 집단에 특성을 배정하여 동일 집단에 속한 대상의 유사성을 갖게 함으로써 집단 간의 차이를 명확하게 하였다. 군집 분석 결과 효율성을 추구 형, 군집, Business process 정확성 추구형 집단과 환경 변화 대응 추구형 군집으로 패턴을 나눌 수 있었다. 응답 기업을 Miles와 Snow의 전략유형으로 분류하여 응답 기업의 전략 유형을 판별한 결과 분석자형 40.6%, 방어자형 15.1%, 공격자형 37.2%, 반응자형 6.9%로 조사되었다. 위에서 유형화한 SCM의 활용 패턴과 전략유형을 Matrix화하여 가설인 SCM 활용 패턴과 전략유형의 적합도와 SCM 성과 만족도와의 관계를 검증하였다. 연구를 수행한 결과 기업이 SCM을 활용할 때, SCM 활용 패턴 및 전략 유형에 따라 SCM 성과 만족도가 다르게 나타난다는 것을 알 수 가 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.41-44
/
2009
데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.334-336
/
2002
군집 분석은 데이터의 속성을 분석하여 서로 유사한 패턴을 가진 데이터를 묶는 방법이다. 군집 분석은 많은 응용 분야에서 쓰이고 있으나, 수행된 군집 분석 결과가 과연 정확한 결과이고 의미 있는 결과인지를 평가하는데 어려움이 있다. 본 논문에서는 군집이 형성된 데이터를 분석하여 군집 분석 결과를 평가하는 상대적 군집 평가 방법을 제안한다. 본 논문에서는 상대적 군집 평가 방법의 인덱스를 정의하고 형성된 군집 분석 결과에 적용해 최적의 군집, 의미 있는 군집을 찾을 수 있음을 보인다. 또한 실험을 통해 제안한 인덱스의 적합성을 보이며, 제안한 인덱스가 기존의 인덱스에 비해 최적의 군집, 의미 있는 군집을더 잘 찾을 수 있음을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2001.04b
/
pp.1017-1020
/
2001
최근 들어 관심의 대상이 되고 있는 CRM, eCRM은 비즈니스 분야에 중요한 역할을 담당하고 있다. 이를 위해 여러 방법들이 사용되고 있으나, 그 중 데이터 마이닝은 핵심 기술이라 할 수 있다. 다양한 데이터 마이닝 기법가운데 군집화 기법은, 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 그런데 기존의 군집화 알고리즘들은 사전에 군집의 개수를 미리 결정해져야 하며, 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 본 논문에서는 진화 알고리즘을 사용하여 자동적으로 적절한 군집의 개수를 결정하여 군집화 될 수 있도록 하고, 병렬 탐색을 통해 지역적 최적해에 수렴되는 문제점을 개선한 알고리즘과 적합도 함수를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.