• Title/Summary/Keyword: 군집 자료

Search Result 1,192, Processing Time 0.036 seconds

A Comparative Analysis on Classification Systems for Children's Materials of Internet Portals and Online Bookstores (인터넷포털과 인터넷서점의 어린이자료 분류시스템의 비교분석)

  • Bae, Yeong-Hwal;Oh, Dong-Geun;Yeo, Ji-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.3
    • /
    • pp.321-344
    • /
    • 2008
  • This study tries to compare the classification systems of major internet portals and their sub-portals specialized for the children and of major online book stores. It compares and analyzes the major directories of them and suggests recommendations not only to improve their own systems but also to apply to the development for the classification systems for children's library. Some of them are: (1) The system should reflect information requests and use behaviors of the children netizen. (2) It should select the terms reflecting the children's viewpoints and expressions and suggest the guidelines by ages. (3) It should maintain the clear hierarchies and grouping for the accessability and convenience of the users. (4) It will be helpful to establish the categories to mix the subject- or concept-based categories and the activities and objects of the children. (5) It will also be helpful to establish the categories based on the curricula added by those creating the imagination and interest and to subdivide by subject.

  • PDF

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

Detecting outliers in multivariate data and visualization-R scripts (다변량 자료에서 특이점 검출 및 시각화 - R 스크립트)

  • Kim, Sung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.517-528
    • /
    • 2018
  • We provide R scripts to detect outliers in multivariate data and visualization. Detecting outliers is provided using three approaches 1) Robust Mahalanobis distance, 2) High Dimensional data, 3) density-based approach methods. We use the following techniques to visualize detected potential outliers 1) multidimensional scaling (MDS) and minimal spanning tree (MST) with k-means clustering, 2) MDS with fviz cluster, 3) principal component analysis (PCA) with fviz cluster. For real data sets, we use MLB pitching data including Ryu, Hyun-jin in 2013 and 2014. The developed R scripts can be downloaded at "http://www.knou.ac.kr/~sskim/ddpoutlier.html" (R scripts and also R package can be downloaded here).

A Selection of the Point Rainfall Process Model Considered on Temporal Clustering Characteristics (시간적 군집특성을 고려한 강우모의모형의 선정)

  • Kim, Kee-Wook;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.747-759
    • /
    • 2008
  • This study, a point rainfall process model, which could represent appropriately observed rainfall data, was to select. The point process models-rectangular pulses Poisson process model(RPPM), Neyman-Scott rectangular pulses Poisson process model(NS-RPPM), and modified Neyman-Scott rectangular pulses Poisson process model(modified NS-RPPM)-all based on Poisson process were considered as possible rainfall models, whose statistical analyses were performed with their simulation rainfall data. As results, simulated rainfall data using the NS-RPPM and the modified NS-RPPM represent appropriately statistics of observed data for several aggregation levels. Also, simulated rainfall data using the modified NS-RPPM shows similar characteristics of rainfall occurrence to the observed rainfall data. Especially, the modified NS-RPPM reproduces high-intensity rainfall events that contribute largely to occurrence of natural harzard such as flood and landslides most similarly. Also, the modified NS-RPPM shows the best results with respect to the total rainfall amount, duration, and inter-event time. In conclusions, the modified NS-RPPM was found to be the most appropriate model for the long-term simulation of rainfall.

Development of the Wind Wave Damage Predicting Functions in southern sea based on Annual Disaster Reports (재해연보기반 남해연안지역 풍랑피해 예측함수 개발)

  • Choo, Tai Ho;Kim, Yeong Sik;Sim, Sang Bo;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.668-675
    • /
    • 2018
  • The continuing urbanization and industrialization around the world has required a large amount of power. Therefore, construction of major infrastructure, including nuclear power plants in coastal areas, has accelerated. In addition, the intensity of natural disasters is increasing due to global warming and abnormal climate phenomena. Natural disasters are difficult to predict in terms of occurrence, location, and scale, resulting in human casualties and property damage. For these reasons, the disaster scale and damage estimation in coastal areas have become important issues. The present study examined the predictable weather data and regional ratings and developed estimating functions for wind wave damage based on the disaster statistics in the southern areas. The results of the present study are expected to help disaster management in advance of the wind wave damage. The NRMSE was used for verification. The accuracy of the NRMSE results ranged from 1.61% to 21.73%.

Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data (원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Eom, Jin-Ah;Roh, Seung-Mok;Noh, Jae-Hoon
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2010
  • Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.

Development of Typhoon Damage Forecasting Function of Southern Inland Area By Multivariate Analysis Technique (다변량 통계분석을 이용한 남부 내륙지역 태풍피해예측모형 개발)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • In this study, the typhoon damage forecasting model was developed for southern inland district. The typhoon damage in the inland district is caused by heavy rain and strong winds, variables are many and varied, but the damage data of the inland district are not enough to develop the model. The hydrological data related to the typhoon damage were hour maximum rainfall amount which is accumulated 3 hour interval, the total rainfall amount, the 1-5 day anticipated rainfall amount, the maximum wind speed and the typhoon center pressure at latitude 33° near the Jeju island. The Multivariate Analysis such as cluster Analysis considering the lack of damage data and principal component analysis removing multi-collinearity of rainfall data are adopted for the damage forecasting model. As a result of applying the developed model, typhoon damage estimated and observed values were up to 2.2 times. this is caused it is difficult to estimate the damage caused by strong winds and it is assumed that the local rainfall characteristics are not considered properly measured by 69 ASOS.

Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF

Spatial Autocorrelation Characteristic Analysis on Bayesian ensemble Precipitation of Nakdong River Basin (낙동강유역 강우의 공간자기상관 특성분석을 통한 베이지안 앙상블 강우 검증)

  • Moon, Soo Jin;Sun, Ho Young;Kang, Boo Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.411-411
    • /
    • 2017
  • 유역 내 발생하는 강우의 공간적인 분포는 인접성 및 거리에 따라 달라질 수 있다. 공간자기상관 분석은 공간단위(유역 또는 행정구역)의 변수(강수 등)가 주변지역과 갖는 관계를 통해 얼마나 분산되어 있는지 혹은 군집되어 있는지를 판별하는 기법으로 최근 많은 연구에서 활성화 되고 있다. 본 연구에서는 낙동강유역을 대상으로 1980~2000년까지 20개년의 기상청을 통해 수집한 강우자료와 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 가용할 수 있는 20개 모델의 강우를 수집하였다. 기후변화 자료는 정상성 분위사상법으로 지역오차보정을 실시하고 불확실성을 저감하고자 베이지안 모델 평균기법을 통해 새로운 시계열을 생성하였다. 생성된 시계열의 공간적인 분포를 정량적으로 평가하고자 중권역별 공간자기상관 분석을 수행하였다. 대부분의 연구에서는 GIS를 활용하여 정성적으로 강우의 분포를 나타내고 있지만 본 연구에서는 공간단위의 인접성 또는 거리에 따른 척도를 기반으로 공간자기상관을 탐색할 수 있는 Moran's I와 LISA(Local Indicators of Spatial Association)기법을 적용하였다. Moran's I는 전체 연구지역에 대한 관계를 하나의 값으로 보여주는 전역적인 기법이며, LISA는 상대적으로 넓은 지역을 국지적으로 구분하여 특정지역에 대한 Hot spot 및 Cold spot을 통해 공간자기상관 정도를 나타내는 국지적인 기법이다. 두 기법을 적용하기 위하여 인접성 기반의 공간매트릭스를 산정하고 계절별 관측값과 베이지안 앙상블 강우의 Moran's I 및 LISA 분석을 실시하였다. 관측자료와 베이지안 앙상블 강우의 분석결과가 매우 유사하게 나타남으로써 베이지안 앙상블 강우의 공간적인 분포가 관측강우를 충분히 재현하고 있다고 판단된다.

  • PDF

A study on the User Experience at Unmanned Checkout Counter Using Big Data Analysis (빅데이터를 활용한 편의점 간편식에 대한 의미 분석)

  • Kim, Ae-sook;Ryu, Gi-hwan;Jung, Ju-hee;Kim, Hee-young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.375-380
    • /
    • 2022
  • The purpose of this study is to find out consumers' perception and meaning of convenience store convenience food by using big data. For this study, NNAVER and Daum analyzed news, intellectuals, blogs, cafes, intellectuals(tips), and web documents, and used 'convenience store convenience food' as keywords for data search. The data analysis period was selected as 3 years from January 1, 2019 to December 31, 2021. For data collection and analysis, frequency and matrix data were extracted using TEXTOM, and network analysis and visualization analysis were conducted using the NetDraw function of the UCINET 6 program. As a result, convenience store convenience foods were clustered into health, diversity, convenience, and economy according to consumers' selection attributes. It is expected to be the basis for the development of a new convenience menu that pursues convenience and convenience based on consumers' meaning of convenience store convenience foods such as appropriate prices, discount coupons, and events.