Journal of the Korean Data and Information Science Society
/
v.26
no.4
/
pp.885-894
/
2015
It is necessary to forecast the electricity demand for reliable and effective operation of the power system. In this study, we try to categorize a functional data, the mean curve in accordance with the time of daily power demand pattern. The data were collected between January 1, 2009 and December 31, 2011. And it were converted to time series data consisting of seasonal components and error component through log transformation and removing trend. Functional clustering by Ma et al. (2006) are applied and parameters are estimated using EM algorithm and generalized cross validation. The number of clusters is determined by classifying holidays or weekdays. Monday, weekday (Tuesday to Friday), Saturday, Sunday or holiday and season are described the mean curve of daily power demand pattern.
Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.
In this paper we introduce the time series clustering methods in the time and frequency domains and discuss the merits or demerits of each method. We analyze 15 daily stock prices of KOSPI 200, and the nonparametric method using the wavelet shows the best clustering results. For the clustering of nonstationary time series using the spectral density, the EMD method remove the trend more effectively than the differencing.
A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.
Seo, Dong Il;Kim, Sang Ug;Jeon, Young Il;Han, Jae Wook
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.205-205
/
2023
지역 빈도 분석과 점 빈도 분석은 하천 기본계획 및 수공 구조물의 설계에 있어 재현기간 별 확률강우량을 산정하기 위한 방법이다. 점 빈도 분석은 자료의 수가 부족하여 높은 재현기간에 대한 확률강우량을 산정하기에 어려운 점이 있다. 2019년도부터 사용되고 있는 지역빈도분석 방법은 이러한 점을 보완해주고 있다. 지역빈도분석을 수행하기 위해서는 지역의 동질성을 확인하는 과정이 가장 중요한 과정이다. 이러한 동질성을 판단하기 위하여 K-means등의 군집분석과 L-moment 법 등을 사용하고 있다. 이러한 차이점으로 인해 두 방법 간의 정확성은 비교가 어려우나 서로 간의 장점, 단점과 결과 간의 차이를 기반으로 산간지역이 많은 강원도와 같은 지역에 대한 확률강우량 산정의 적절한 방법을 판단해보고자 본 연구를 진행하였다. 지역 빈도 분석은 강원도에 위치한 48개 관측소의 강우 자료 수집 후 고도, 위치, 지속시간 별 강우량을 변수로 지정하고 K-means 분석을 통해 6개의 군집으로 구분하여 수행되었다. 이질성 척도는 관측 자료와 500번의 모의 수행을 통해 결정하였다. 이후 분석된 군집이 동질한 경우 확률분포형에 적합시켜 확률강우량을 산정하였다. 점 빈도 분석은 지역 빈도 분석에서 결정된 군집에서의 최대 강우량과 최소 강우량 관측소의 자료를 이용하여 수행하였다. 본 연구에서는 점빈도분석과 지역빈도분석의 결과를 비교하였으며, 두 가지 분석 방법에 따른 차이의 발생원인 및 특성을 결론으로 제시하였다.
It is well known that spectral density function determines auto-covariance function of stationary time-series data and smoothed periodogram is a consistent estimator of spectral density function. Recently, Kim and Park (2007) showed that smoothed- periodogram based distances performs very well for the classification. In this paper, we introduce classification methods with smoothed periodogram and apply the approaches to the monthly precipitation measurements obtained from January, 1987 through December, 2007 at 22 locations in South Korea.
Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.112-112
/
2018
최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.
In many biomedical fields, especially in studies of disease progressions, we frequently encounter two sequential events, both of which are often interval-censored due to regular examinations. Such a structure is called doubly interval-censoring (DIC), and our primary interest is the elapsed time between two consecutive events. In this paper, we propose a weighted rank regression approach for DIC data under the semiparametric accelerated failure time model. After transforming DIC data into simple interval-censored data where the true elapsed times may lie, we develop estimation procedures with a Gehan-type weight by gathering all comparable pairs of observed residuals from transformed data. Moreover, we generalize this approach with data-dependent weights and extend it to clustered DIC data, where the cluster size is potentially informative, using an inverse weighting strategy. An efficient technique for variance estimation as an alternative to resampling techniques is considered. We establish asymptotic properties and conduct numerical studies to demonstrate finite sample performances. Finally, we illustrate our method with a real dataset for clustered DIC data.
지리산국립공원 대원계곡의 삼림군집구조를 분석하여 국립공원관리의 기초자료를 제공하기 위하여 기조사지역(이경재 등, 1991)이외의 지역에 대해 39개 조사지(100m2)를 설정하고 식생조사를 실시하였다 Classification의 한 기법인 TWINSPAN을 사용하여 군집을 분리하였으며 그 결과 느릅나무-굴참나무군집(군집 I) 졸참나무-굴참나무군집(군집II) 졸참나무군집(군집III-V) 신갈나무군집(군집VI) 그리고 서어나무-노각나무군집(군집VII)의 7개 군집으로 나뉘었다 각 군집에 대해 우점도 종다양도 유사도 종수 및 개체수 그리고 흉고직경 등의 분석을 통해 군집의 종조서을 살펴본 결과 지리산 대원계곡의 삼림은 졸참나무 굴참나무 신갈나무 등의 참나무가 주류를 이루고 있었으며 점차 서어나무와 노각나무등으로 천이가 진행되어갈 것으로 판단되었다.
거제도 노자산지역의 식물군집구조를 파악하기 위해 43개 조사구(각 조사구당 10m$\times$10m)를 거제휴양림 임도 주변과 노자산 북사면에 설정하고 식생조사를 실시하였다. 식생조사자료를 이용 TWINSPAN에 의한 classification과 DCA에 의한 ordinationqnstjr을 실시하였다. TWINSPAN분석과 DCA분석 결과 소사나무군집(군집I), 소나무군집(군집II), 졸참나무군집(군집(III), 고로쇠나무, 느티나무, 비목나무, 까치박달 등을 우점종으로 하는 낙엽활엽수군집(군집IV)의 4개 군집으로 분리되었다. 식물군집구조 분석 결과 노자산지역의 식생은 소나무$\longrightarrow$졸참나무군집$\longrightarrow$낙엽활엽수군집으로 생태적 천이가 이루어질 것으로 판단되었으며, 소사나무군집은 해발고도가 높고 건조한 지역에 나타나는 토지극상으로 판단되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.