• 제목/요약/키워드: 군집 수 결정

Search Result 365, Processing Time 0.025 seconds

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • 박민재;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.263-266
    • /
    • 2002
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.

How to determine the number of clusters (군집수 결정 문제)

  • Yun, Bok-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.689-693
    • /
    • 2004
  • 주어진 데이터를 일정한 기준에 따라 여러 개 군집으로 분할할 때 대부분 경우는 군집수에 대한 사전 정보가 없이 군집화를 실시하게 된다. 적절한 군집수의 결정은 군집화 결과의 타당성에 전제가 되는 매우 중요한 문제이나 내재된 복잡성 때문에 실제 적용에 간편한 방법을 찾기 힘들고 더구나 다양한 형태의 데이터에 보편적으로 적합한 방법을 찾기는 더욱 어렵다. 본 연구에서는 기존의 제시된 군집수 결정방법 들의 아이디어 들을 소개하고 주어진 데이터의 종류에 관계없이 일반적으로 적용할 수 있는 새로운 군집수 결정기법을 제시한다. 대부분의 경우 군집수 결정은 군집화와 동시에 이루어지게 되므로 이것을 한꺼번에 처리하는 범용의 방법도 소개한다. 적용 예제들을 통한 타당성 검증도 이루어진다.

  • PDF

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • Park, Min-Jae;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Optimal determination of cluster size has an effect on the result of clustering. In K-means algorithm, the difference of clustering performance is large by initial K. But the initial cluster size is determined by prior knowledge or subjectivity in most clustering process. This subjective determination may not be optimal. In this Paper, the genetic algorithm based optimal determination approach of cluster size is proposed for automatic determination of cluster size and performance upgrading of its result. The initial population based on attribution is generated for searching optimal cluster size. The fitness value is defined the inverse of dissimilarity summation. So this is converged to upgraded total performance. The mutation operation is used for local minima problem. Finally, the re-sampling of bootstrapping is used for computational time cost.

Validation-based Clustering Algorithm (유효성 기반 군집화 알고리즘)

  • ;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.19-21
    • /
    • 2003
  • 본 논문에서는 군집화의 가장 중요한 2가지 문제에 대한 새로운 해결책을 제시한다. 첫 번째 문제는 두 객체가 하나의 군집내에 포함될 수 있는지를 결정하는 유사 결정으로써, 이를 해결하기 위해 군집 유효화 지수에 기반한 유사 결정 기법을 제안한다. 이 기법은 정성적인 인지 과정을 정량적인 비교 결정 과정으로 바꾼다 이 기법은 본 논문에서 제안한 랜덤 군집화와 전체 군집화의 두 부분으로 구성된 유효성 기반 군집화 알고리즘의 핵심을 이루며. 기존의 않은 군집화 알고리즘에서 요구되는 복잡한 파라미터를 결정할 필요가 없어지도록 한다. 두 번째 문제는 최적 군집 수 (optimal number of clusters)를 찾는 것으로써, 이것 또한 앞에서 제안한 기법에 의해서 전체 군집화에서 찾을 수 있다. 마지막으로 제안한 기법과 군집화 알고리즘의 효용성 및 효율성을 보여주는 실험 결과가 제시된다.

  • PDF

An Optimal Clustering Using Statistical Learning Theory (통계적 학습이론을 이용한 최적 군집화)

  • 최준혁;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.229-233
    • /
    • 2005
  • 모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.

  • PDF

The Analysis of Optimal Cluster Number of Precipitation Region with Dunn Index (Dunn 지수를 이용한 최적 강수지역 군집수 분석)

  • Um, Myoung-Jin;Jeong, Chang-Sam;Nam, Woo-Sung;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.87-91
    • /
    • 2011
  • 강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.

  • PDF

An Efficient Clustering using the Genetic Algorithm (진화 알고리즘을 적용한 효율적 군집화 기법)

  • Lee, Soo-Jung;Kwon, Hye-Ryun;Kim, Eun-Ju;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.1017-1020
    • /
    • 2001
  • 최근 들어 관심의 대상이 되고 있는 CRM, eCRM은 비즈니스 분야에 중요한 역할을 담당하고 있다. 이를 위해 여러 방법들이 사용되고 있으나, 그 중 데이터 마이닝은 핵심 기술이라 할 수 있다. 다양한 데이터 마이닝 기법가운데 군집화 기법은, 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 그런데 기존의 군집화 알고리즘들은 사전에 군집의 개수를 미리 결정해져야 하며, 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 본 논문에서는 진화 알고리즘을 사용하여 자동적으로 적절한 군집의 개수를 결정하여 군집화 될 수 있도록 하고, 병렬 탐색을 통해 지역적 최적해에 수렴되는 문제점을 개선한 알고리즘과 적합도 함수를 제안한다.

  • PDF

Clustering Optimization Cluster Count Determination for Tourist Destination Recommendation (관광지 추천을 위한 클러스터링 최적화 군집수 결정)

  • Hae-Jin Yeo;In-Whee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.371-373
    • /
    • 2023
  • factor 들이 많은 데이터의 군집화는 어려움을 요한다. K-means 클러스터링을 사용하여 군집화를 할 때, 각 데이터들이 가진 factor 의 개수가 상이한 경우 비슷한 성향을 가진 데이터임에도 불구하고 클러스터링이 적합하게 되지 않는 현상이 발생한다. 이러한 문제점을 해결하기 위해 최적의 군집화 개수를 결정하는 실루엣 기반 방법을 제안하고 제안기법의 성능을 평가한다.

Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm (개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • Han, Jin-Woo;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.

A Study on Optimizing the Number of Clusters using External Cluster Relationship Criterion (외부 군집 연관 기준 정보를 이용한 군집수 최적화)

  • Lee, Hyun-Jin;Jee, Tae-Chang
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2011
  • The k-means has been one of the popular, simple and faster clustering algorithms, but the right value of k is unknown. The value of k (the number of clusters) is a very important element because the result of clustering is different depending on it. In this paper, we present a novel algorithm based on an external cluster relationship criterion which is an evaluation metric of clustering result to determine the number of clusters dynamically. Experimental results show that our algorithm is superior to other methods in terms of the accuracy of the number of clusters.