Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.263-266
/
2002
데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.689-693
/
2004
주어진 데이터를 일정한 기준에 따라 여러 개 군집으로 분할할 때 대부분 경우는 군집수에 대한 사전 정보가 없이 군집화를 실시하게 된다. 적절한 군집수의 결정은 군집화 결과의 타당성에 전제가 되는 매우 중요한 문제이나 내재된 복잡성 때문에 실제 적용에 간편한 방법을 찾기 힘들고 더구나 다양한 형태의 데이터에 보편적으로 적합한 방법을 찾기는 더욱 어렵다. 본 연구에서는 기존의 제시된 군집수 결정방법 들의 아이디어 들을 소개하고 주어진 데이터의 종류에 관계없이 일반적으로 적용할 수 있는 새로운 군집수 결정기법을 제시한다. 대부분의 경우 군집수 결정은 군집화와 동시에 이루어지게 되므로 이것을 한꺼번에 처리하는 범용의 방법도 소개한다. 적용 예제들을 통한 타당성 검증도 이루어진다.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.1
/
pp.12-17
/
2003
Optimal determination of cluster size has an effect on the result of clustering. In K-means algorithm, the difference of clustering performance is large by initial K. But the initial cluster size is determined by prior knowledge or subjectivity in most clustering process. This subjective determination may not be optimal. In this Paper, the genetic algorithm based optimal determination approach of cluster size is proposed for automatic determination of cluster size and performance upgrading of its result. The initial population based on attribution is generated for searching optimal cluster size. The fitness value is defined the inverse of dissimilarity summation. So this is converged to upgraded total performance. The mutation operation is used for local minima problem. Finally, the re-sampling of bootstrapping is used for computational time cost.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.19-21
/
2003
본 논문에서는 군집화의 가장 중요한 2가지 문제에 대한 새로운 해결책을 제시한다. 첫 번째 문제는 두 객체가 하나의 군집내에 포함될 수 있는지를 결정하는 유사 결정으로써, 이를 해결하기 위해 군집 유효화 지수에 기반한 유사 결정 기법을 제안한다. 이 기법은 정성적인 인지 과정을 정량적인 비교 결정 과정으로 바꾼다 이 기법은 본 논문에서 제안한 랜덤 군집화와 전체 군집화의 두 부분으로 구성된 유효성 기반 군집화 알고리즘의 핵심을 이루며. 기존의 않은 군집화 알고리즘에서 요구되는 복잡한 파라미터를 결정할 필요가 없어지도록 한다. 두 번째 문제는 최적 군집 수 (optimal number of clusters)를 찾는 것으로써, 이것 또한 앞에서 제안한 기법에 의해서 전체 군집화에서 찾을 수 있다. 마지막으로 제안한 기법과 군집화 알고리즘의 효용성 및 효율성을 보여주는 실험 결과가 제시된다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.229-233
/
2005
모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.87-91
/
2011
강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.
Proceedings of the Korea Information Processing Society Conference
/
2001.04b
/
pp.1017-1020
/
2001
최근 들어 관심의 대상이 되고 있는 CRM, eCRM은 비즈니스 분야에 중요한 역할을 담당하고 있다. 이를 위해 여러 방법들이 사용되고 있으나, 그 중 데이터 마이닝은 핵심 기술이라 할 수 있다. 다양한 데이터 마이닝 기법가운데 군집화 기법은, 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 그런데 기존의 군집화 알고리즘들은 사전에 군집의 개수를 미리 결정해져야 하며, 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 본 논문에서는 진화 알고리즘을 사용하여 자동적으로 적절한 군집의 개수를 결정하여 군집화 될 수 있도록 하고, 병렬 탐색을 통해 지역적 최적해에 수렴되는 문제점을 개선한 알고리즘과 적합도 함수를 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.371-373
/
2023
factor 들이 많은 데이터의 군집화는 어려움을 요한다. K-means 클러스터링을 사용하여 군집화를 할 때, 각 데이터들이 가진 factor 의 개수가 상이한 경우 비슷한 성향을 가진 데이터임에도 불구하고 클러스터링이 적합하게 되지 않는 현상이 발생한다. 이러한 문제점을 해결하기 위해 최적의 군집화 개수를 결정하는 실루엣 기반 방법을 제안하고 제안기법의 성능을 평가한다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.5
/
pp.517-524
/
2004
The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.
The k-means has been one of the popular, simple and faster clustering algorithms, but the right value of k is unknown. The value of k (the number of clusters) is a very important element because the result of clustering is different depending on it. In this paper, we present a novel algorithm based on an external cluster relationship criterion which is an evaluation metric of clustering result to determine the number of clusters dynamically. Experimental results show that our algorithm is superior to other methods in terms of the accuracy of the number of clusters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.