• 제목/요약/키워드: 군집 수 결정

검색결과 365건 처리시간 0.187초

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.263-266
    • /
    • 2002
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.

군집수 결정 문제 (How to determine the number of clusters)

  • 윤복식
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.689-693
    • /
    • 2004
  • 주어진 데이터를 일정한 기준에 따라 여러 개 군집으로 분할할 때 대부분 경우는 군집수에 대한 사전 정보가 없이 군집화를 실시하게 된다. 적절한 군집수의 결정은 군집화 결과의 타당성에 전제가 되는 매우 중요한 문제이나 내재된 복잡성 때문에 실제 적용에 간편한 방법을 찾기 힘들고 더구나 다양한 형태의 데이터에 보편적으로 적합한 방법을 찾기는 더욱 어렵다. 본 연구에서는 기존의 제시된 군집수 결정방법 들의 아이디어 들을 소개하고 주어진 데이터의 종류에 관계없이 일반적으로 적용할 수 있는 새로운 군집수 결정기법을 제시한다. 대부분의 경우 군집수 결정은 군집화와 동시에 이루어지게 되므로 이것을 한꺼번에 처리하는 범용의 방법도 소개한다. 적용 예제들을 통한 타당성 검증도 이루어진다.

  • PDF

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-17
    • /
    • 2003
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다

유효성 기반 군집화 알고리즘 (Validation-based Clustering Algorithm)

  • 김민호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.19-21
    • /
    • 2003
  • 본 논문에서는 군집화의 가장 중요한 2가지 문제에 대한 새로운 해결책을 제시한다. 첫 번째 문제는 두 객체가 하나의 군집내에 포함될 수 있는지를 결정하는 유사 결정으로써, 이를 해결하기 위해 군집 유효화 지수에 기반한 유사 결정 기법을 제안한다. 이 기법은 정성적인 인지 과정을 정량적인 비교 결정 과정으로 바꾼다 이 기법은 본 논문에서 제안한 랜덤 군집화와 전체 군집화의 두 부분으로 구성된 유효성 기반 군집화 알고리즘의 핵심을 이루며. 기존의 않은 군집화 알고리즘에서 요구되는 복잡한 파라미터를 결정할 필요가 없어지도록 한다. 두 번째 문제는 최적 군집 수 (optimal number of clusters)를 찾는 것으로써, 이것 또한 앞에서 제안한 기법에 의해서 전체 군집화에서 찾을 수 있다. 마지막으로 제안한 기법과 군집화 알고리즘의 효용성 및 효율성을 보여주는 실험 결과가 제시된다.

  • PDF

통계적 학습이론을 이용한 최적 군집화 (An Optimal Clustering Using Statistical Learning Theory)

  • 최준혁;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.229-233
    • /
    • 2005
  • 모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.

  • PDF

Dunn 지수를 이용한 최적 강수지역 군집수 분석 (The Analysis of Optimal Cluster Number of Precipitation Region with Dunn Index)

  • 엄명진;정창삼;남우성;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.87-91
    • /
    • 2011
  • 강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.

  • PDF

진화 알고리즘을 적용한 효율적 군집화 기법 (An Efficient Clustering using the Genetic Algorithm)

  • 이수정;권혜련;김은주;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1017-1020
    • /
    • 2001
  • 최근 들어 관심의 대상이 되고 있는 CRM, eCRM은 비즈니스 분야에 중요한 역할을 담당하고 있다. 이를 위해 여러 방법들이 사용되고 있으나, 그 중 데이터 마이닝은 핵심 기술이라 할 수 있다. 다양한 데이터 마이닝 기법가운데 군집화 기법은, 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 그런데 기존의 군집화 알고리즘들은 사전에 군집의 개수를 미리 결정해져야 하며, 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 본 논문에서는 진화 알고리즘을 사용하여 자동적으로 적절한 군집의 개수를 결정하여 군집화 될 수 있도록 하고, 병렬 탐색을 통해 지역적 최적해에 수렴되는 문제점을 개선한 알고리즘과 적합도 함수를 제안한다.

  • PDF

관광지 추천을 위한 클러스터링 최적화 군집수 결정 (Clustering Optimization Cluster Count Determination for Tourist Destination Recommendation)

  • 여해진;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.371-373
    • /
    • 2023
  • factor 들이 많은 데이터의 군집화는 어려움을 요한다. K-means 클러스터링을 사용하여 군집화를 할 때, 각 데이터들이 가진 factor 의 개수가 상이한 경우 비슷한 성향을 가진 데이터임에도 불구하고 클러스터링이 적합하게 되지 않는 현상이 발생한다. 이러한 문제점을 해결하기 위해 최적의 군집화 개수를 결정하는 실루엣 기반 방법을 제안하고 제안기법의 성능을 평가한다.

개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병 (Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm)

  • 한진우;전성해;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.517-524
    • /
    • 2004
  • 1960년대 퍼지 이론이 소개된 이후 데이터 마이닝을 포함한 기계 학습 분야의 군집화 작업에서 퍼지 이론이 폭넓게 사용되었다. 퍼지 C-평균 알고리즘은 가장 많이 사용되는 퍼지 군집화 알고리즘이다. 이 알고리즘은 하나의 데이터 개체가 서로 다른 소속 정도를 가지고 각 군집에 할당될 수 있도록 한다. 퍼지 C-평균 알고리즘도 K-평균 알고리즘과 같은 일반적인 군집화 알고리즘과 마찬가지로 초기 군집수와 군집 중심의 위치에 의해 최종 군집 결과의 성능 차이가 나타난다. 군집화를 위한 이러한 초기 설정은 주관적이며 이 때문에 적절치 못한 결과를 얻게 될 수도 있다. 본 논문에서는 이 문제를 해결할 수 있는 방법으로 주어진 학습 데이터의 속성을 기반으로 한 초기 군집수와 군집 중심을 결정하는 개선된 밀도 기반의 퍼지 C-평균 알고리즘을 제안하였다. 제안 방법은 격자를 사용하여 초기 군집 중심의 위치와 군집수를 결정하였다. 기존에 많이 이용되었던 객관적인 기계 학습 데이터를 이용하여 제안 알고리즘의 성능비교를 수행하였다.

외부 군집 연관 기준 정보를 이용한 군집수 최적화 (A Study on Optimizing the Number of Clusters using External Cluster Relationship Criterion)

  • 이현진;지태창
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권3호
    • /
    • pp.339-345
    • /
    • 2011
  • 군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법이다. k-means는 간단하고 빠른 군집화 알고리즘 중의 하나이다. 군집의 수 k는 군집화를 수행하는데 매우 중요한 요소이며, k의 값에 의해 군집화 결과가 달라진다. 본 논문에서는 반복적인 k-means 수행과 군집의 품질을 평가하는 외부 군집 연관 기준 정보를 결합하여 최적의 군집수를 결정하는 방법을 제안한다. 실험 결과 기존의 방법들에 비하여 제안하는 방법이 군집수의 정확성 측면에서 우수한 성능을 보였다.