• Title/Summary/Keyword: 군집 무인기 시스템

Search Result 10, Processing Time 0.025 seconds

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control (포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계)

  • Han, Ki-Hoon;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • This paper deals with a behavior based decentralized control strategy for UAV swarming utilizing the artificial potential functions and the sliding mode control technique. Individual interactions for swarming behavior are modeled using the artificial potential functions. The motion of individual UAV is directed toward the negative gradient of the combined potential. For tracking the reference trajectory of UAV swarming, a swarming center is considered as the object of control. The sliding-mode control technique is adopted to make the proposed swarm control strategy robust with respect to the system uncertainties and the varying mission environment. Numerical simulation is performed to verify the performance of the proposed controller.

Collision Avoidance Maneuver Design for the Multiple Indoor UAV by using AR. Drone (AR. Drone을 이용한 실내 군집비행용 충돌회피 기동 설계)

  • Cho, Dong-Hyun;Moon, Sung Tae;Jang, Jong Tai;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.752-761
    • /
    • 2014
  • With increasing of interest in quad-rotor which has excellent maneuverability recently, a various types of multi-rotor aircraft was developed and commercialized, and there are many kinds of leisure products to be easily operated. In these products, the AR.Drone manufactured by Parrot has an advantage that it is easily operated by user due to the its internal stabilization loop in the on-board computer. Thus it is possible to design the unmanned UAV system easily by using this AR.Drone and its inner loop for the stabilization. For this advantage, KARI(Korea Aerospace Research Institute) has been developing the indoor swarming flight system by using multiple AR.Drones. For this indoor swarming flight, it is necessary that not only the position controller for each AR.Drone, but also the collision avoidance algorithm. Therefore, in this paper, the collision avoidance controller is provided for the swarm flight by using these AR.Drones.

Consensus-based Autonomous Search Algorithm Applied for Swarm of UAVs (군집 무인기 활용을 위한 합의 기반 자율 탐색 알고리즘)

  • Park, Kuk-Kwon;Kwon, Ho-Jun;Choi, Eunju;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Swarm of low-cost UAVs for search mission has benefit in the sense of rapid search compared to use of single high-end UAV. As the number of UAVs forming swarm increases, not only the time for the mission planning increases, but also the system to operate UAVs has excessive burden. This paper addresses a decentralized area search algorithm adequate for multiple UAVs which takes advantages of flexibility, robustness, and simplicity. To down the cost, it is assumed that each UAV has limited ability: close-communication, basic calculation, and limited memory. In close-communication, heath conditions and search information are shared. And collision avoidance and consensus of next search direction are then done. To increase weight on un-searched area and to provide overlapped search, the score function is introduced. Performance and operational characteristics of the proposed search algorithm and mission planning logic are verified via numerical simulations.

Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence (군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘)

  • Kim, Moon-Jung;Kim, Jeong-Hun;Kim, Hyo-Jung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.523-530
    • /
    • 2022
  • Since the Multi-UAV system for various missions is more complex than a single UAV, an efficient formation control method is required. In wide-area search mission, there is a need for a distributed control for flexible formation that has a low burden of communication and computation and enables autonomous formation between UAVs. This paper proposes a flexible formation operation method that considers the swarm formation, the bank alignment formation, and the formation movement to expand the scan area and improve search performance. The algorithm has a vibration characteristic of the second-order system for a relative distance and can design an algorithm through parameter tuning. In addition, we converted control commands to suit conventional UAV systems and demonstrated the performance of algorithms for a formation and movement of a formation through simulation.

A study on the security threat and security requirements for multi unmanned aerial vehicles (무인기 군집 비행 보안위협 및 보안요구사항 연구)

  • Kim, Mansik;Kang, Jungho;Jun, Moon-seog
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) have mostly been used for military purposes but with the progress in ICT and reduced manufacturing costs, they are increasingly used for various private services. UAVs are expected to carry out autonomous flying in the future. In order to carry out complex tasks, swarm flights are essential. Although the swarm flights has been researched a lot due to its different network and infrastructure from the existing UAV system, There are still not enough study on security threats and requirements for the secure swarm flights. In this paper, to solve these problems, UAV autonomous flight technology is defined based on US Army Corps of Engineers (USACE) and Air Force Research Laboratory (AFRL), and swarm flights and security threat about it are classified. And then we defined and compared security requirements according to security threats of each swarm flights so as to contribute to the development of secure UAC swarm flights in the future.

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

Study on Estimation of Unmanned Enforcement Equipment Installation Criteria and Proper Installation Number (무인교통단속장비 설치 판단 기준 및 설치대수 산정 연구)

  • So, Hyung-Jun;Kim, Yong-Man;Kim, Nam-Seon;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.49-60
    • /
    • 2020
  • The number of traffic control equipment installed to prevent traffic accidents increases every year due to continuous installation by the National Police Agency and local governments. However, it is installed based on qualitative judgment rather than engineering analysis results. The purpose of this study was to present additional installations in the future by presenting the installation criteria considering the severity of accidents for each road type and calculating the appropriate number of installations. ARI indicators that can indicate the severity of traffic accidents were developed, and road types were classified through analysis of variance and cluster analysis, and accident information by road type was analyzed to derive ARI of clusters with high traffic accident severity. The ARI values required to determine the installation of equipment for each road type were presented, and 5,244 additional installation points were analyzed.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.