• 제목/요약/키워드: 군집

검색결과 6,637건 처리시간 0.044초

지리산국립공원 삼신봉주변 산불지역의 식생회복현황 (Plant Recovery of the Burnt Area around Samsinbong in Chirisan National Park)

  • 김정호
    • 한국환경생태학회지
    • /
    • 제14권1호
    • /
    • pp.18-27
    • /
    • 2000
  • 지리산국립공원 동부지역인 경남하동군 화개면에 위치하는 삼신봉(해발 1,284m) 산림 중 산불이 발생하였던 지역의 식생회복현황을 파악하기 위해 산불이 발생하였던 지역에 20개 조사구 대조지역에 12개 조사구를 설정하고 연구를 수행하였다 산불이 발생하였던 지역에 설정한 20개 조사구를 대상으로 TWINSPAN과 DCA를 분석한 결과 신갈나무군집(I) 신갈나무-쇠물푸레군집(II) 으로 분리되었고 대조지역에 설정한 조사구는 신갈나무군집(II)이었다 군집 I과 군집II에서 교목층과 아교목층의 대부분 수목이 고사상태이었고 관목층에서는 산화후 천이 초기에 나타나는 조록싸리가 우점하고 있었다 상대우점치와 유사도지수를 분석한 결과 산불이 발생하였던 신갈나무군집(I) 신갈나무-쇠물푸레군집(II) 은 대조구인 신갈나무군집(III)과 유사도지수분석에서 유사성이 높았는데 산불발생 이후 피해를 입은 신갈나무가 맹아에 의해 회복속도가 빠른 것으로 추정되었다 Shannon의 종다양도는 산불지역(군집 I,II)에서 각각 0.3259, 0.4727이었고 대조구 (군집III)는 0.1084로 나타났다.

  • PDF

자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 (Intelligent Data Mining Agent for Automatic Clustering)

  • 박정은;전성해;오경환
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.370-376
    • /
    • 2002
  • 인터넷 환경에서 발생되는 수많은 데이터를 지능적으로 처리할 수 있는 자동화된 분석 시스템의 필요성이 제기된다. 이러한 시스템의 데이터 분석은 크게 지도 학습과 자율 학습으로 나된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 지능화된 데이터 마이닝 에이전트를 제안한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 본 논문의 자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 구성된 다중 에이전트로서 두 개의 에이전트가 서로 정보를 교환하면서 최적의 군집화를 수행한다. UCI Machine Repository 데이터를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

비음수 행렬 분해와 퍼지 관계를 이용한 문서군집 (Document Clustering using Non-negative Matrix Factorization and Fuzzy Relationship)

  • 박선;김경준
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.239-246
    • /
    • 2010
  • 본 논문은 비음수 행렬 분해와 퍼지 관계를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지 관계 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

의미 특징과 퍼지를 이용한 문서군집 (Document Clustering using Semantic Features and Fuzzy)

  • 박선;김철원;안동언
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.293-295
    • /
    • 2010
  • 본 논문은 문서의 의미특징과 퍼지를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지를 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

도시 도로 환경에서의 적용 가능한 동적 군집주행에 관한 연구 (A Study on the Applicable Dynamic Platooning in Urban Road Environment)

  • 최수민;박수용;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.80-82
    • /
    • 2020
  • 최근 자율주행차량의 기술 개발이 확대되면서 이를 기반으로 운전자, 인프라 등 다양한 관점에서 효과를 기대할 수 있는 군집주행에 대한 관심도 점차 높아지고 있다. 현재 고속도로에서만 적용 가능한 군집주행 기술이 상용화 되면서 교차로가 많은 도시 도로 환경에서도 이를 적용하기 위해 여러 자동차 업체에서 시스템을 개발 중이다. 하지만 기존 군집주행 방식은 군집이 해체될 경우 차량이 다시 군집을 형성하고 다른 군집에 가입하는 과정에서 발생하는 시간이나 비용적인 측면에서 도로 처리량과 시간 단축이라는 본래 군집주행의 목표에 미치지 못한다. 따라서 본 논문은 차량 간에 주고받는 메시지를 개선하여 군집주행 알고리즘을 새롭게 설계해 도시 도로 환경에서도 적용 가능한 동적 군집주행에 대해 제안하였다.

국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교 (Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations)

  • 김규범;염병우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권5호
    • /
    • pp.86-97
    • /
    • 2007
  • 현재 운영중인 국가지하수관측소의 지하수위 변동 특성을 파악하고자, 2003년부터 2005년까지의 156주 동안의 202개 암반관측정과 112개 충적관측정을 대상으로 주성분분석을 실시하였다. 암반 및 충적관측정의 지하수위에 대하여 80% 정도 설명 가능한 8개 주성분을 각각 추출하였으며 이중 충적관측정에 대해서는 주성분 인자적재값을 이용하여 군집분석을 실시한 결과 강우에 대한 지하수위의 반응(군집 1: 4.6일, 군집 2: 24.1일, 군집 3: 1.4일), 수위 변동추세(군집 1: $2.05{\times}10^{-4}$ m/day, 군집 2: $-7.85{\times}10^{-4}$ m/day, 군집 3: $-3.51{\times}10^{-5}$ m/day), 수위 변동 폭(군집 1 < 군집 2 < 군집3) 등에 의하여 설명되는 3개의 군집으로 분류되었으며, 각 군집은 유의수준 0.05에서 인근 하천과의 거리(군집 3 < 군집 2 < 군집 1), 지하수 함양율(군집 3 < 군집 2 < 군집 1) 및 지형 경사 특성(군집 3이 평야지대, 군집 1은 급경사 지역) 등에 차이를 보이는 것으로 나타났다.

흰개미 군집 알고리즘을 이용한 유사 블로그 추천 시스템에 관한 연구 (A Study of Similar Blog Recommendation System Using Termite Colony Algorithm)

  • 정기성;조이석;이말례
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.83-88
    • /
    • 2013
  • 본 연구의 목적은 유사 블로그 추천 시스템을 통해서 특정 주제의 유사도에 따라 주제를 찾아 주는 것이다. 유사 추천 시스템을 실현하기 위해서는 대규모 데이터 집합에서 유사항목을 가진 그룹을 찾을 수 있도록 군집해야 한다. 군집화(clustering) 기법은 군집하고자 하는 목적에 따라 적합한 기법과 군집수가 결정되어야 한다. 군집기법으로는 가장 많이 사용되는 K-means 알고리즘을 사용 하였고 추천 알고리즘은 흰개미 군집 알고리즘을 사용하였다. 흰개미 습성 모델을 이용한 군집화 기법은 K-means 알고리즘이 갖고 있는 적절한 군집 갯수 문제점을 해결하고, 군집화 시간을 단축하며, 군집을 위한 군집 평균 이동횟수를 개선한다.

시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰 (A Review of Cluster Analysis for Time Course Microarray Data)

  • 손인석;이재원;김서영
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.13-32
    • /
    • 2006
  • 생물학자들은 시간에 따라 발현 수준이 변화하는 유전자의 군집화를 시도하고 있다. 지금까지는 마이크로어레이 자료의 군집분석에 관한 연구의 경우 군집 방법 자체를 비교하는 연구가 주를 이루었다. 그러나 군집화 이전에 의미있는 변화를 보이는 유전자 선택에 따라 군집화 결과가 달라지기 때문에, 군집 분석에 있어서 유전자 선택 단계도 중요하게 고려되어야 한다. 따라서, 본 논문에서는 시간 경로 마이크로어레이 자료를 군집 분석하는데 있어서 유전자 선택, 군집 방법 선택, 군집평가 방법 선택 등 3가지 요인을 고려한 폭 넓은 비교 연구를 하였다.

평균점에 대한 불일치의 합을 이용한 자동 단어 군집화 (Automatic word clustering using total divergence to the average)

  • 이호;서희철;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.419-424
    • /
    • 1998
  • 본 논문에서는 단어들의 분포적 특성을 이용하여 자동으로 단어를 군집화(clustering) 하는 기법을 제시한다. 제안된 군집화 기법에서는 단어들 사이의 거리(distance)를 가상 공간상에 있는 두 단어의 평균점에 대한 불일치의 합(total divergence to the average)으로 측정하며 군집화 알고리즘으로는 최소 신장 트리(minimal spanning tree)를 이용한다. 본 논문에서는 이 기법에 대해 두 가지 실험을 수행한다. 첫 번째 실험은 코퍼스에서 상위 출현 빈도를 가지는 약 1,200 개의 명사들을 의미에 따라 군집화 하는 것이며 두 번째 실험은 이 논문에서 제시한 자동 군집화 방법의 성능을 객관적으로 평가하기 위한 것으로 가상 단어(pseudo word)에 대한 군집화이다. 실험 결과 이 방법은 가상 단어에 대해 약 91%의 군집화 정확도와(clustering precision)와 약 81%의 군집 순수도(cluster purity)를 나타내었다. 한편 두 번째 실험에서는 평균점에 대한 불일치의 합을 이용한 거리 측정에서 나타나는 문제점을 보완한 거리 측정 방법을 제시하였으며 이를 이용하여 가상 단어 군집화를 수행한 결과 군집화 정확도와 군집 순수도가 각각 약 96% 및 95%로 향상되었다.

  • PDF

AMI로부터 측정된 전력사용데이터에 대한 군집 분석 (Clustering load patterns recorded from advanced metering infrastructure)

  • 안효정;임예지
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.969-977
    • /
    • 2021
  • 본 연구에서는 Hierarchical K-means 군집화 알고리즘을 이용해 서울의 A아파트 가구들의 전력 사용량 패턴을 군집화 하였다. 차원을 축소해주면서 패턴을 파악할 수 있는 Hierarchical K-means 군집화 알고리즘은 기존 K-means 군집화 알고리즘의 단점을 보완하여 최근 대용량 전력 사용량 데이터에 적용되고 있는 방법론이다. 본 연구에서는 여름 저녁 피크 시간대의 시간당 전력소비량 자료에 대해 군집화 알고리즘을 적용하였으며, 다양한 군집 개수와 level에 따라 얻어진 결과를 비교하였다. 결과를 통해 사용량에 따라 패턴이 군집화 됨을 확인하였으며, 군집화 유효성 지수들을 통해 이를 비교하였다.