• Title/Summary/Keyword: 군집주행

Search Result 75, Processing Time 0.032 seconds

VENTOS Simulation for Platoon Driving Considering ISO/PAS 21448 Standard (ISO/PAS 21448 표준을 고려한 군집주행의 VENTOS 시뮬레이션)

  • Kim, Youngjae;Kwon, YongGyun;Kim, Dong Hwan;Hong, Jang-Eui
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.698-701
    • /
    • 2020
  • 여러 대의 자율주행 차량이 하나의 그룹을 형성하여 주행하는 군집주행은 미래 고속도로 교통 시스템의 핵심 기술이다. 이러한 군집주행에서 발생할 수 있는 다양한 상황에서의 안전을 고려하는 일은 단독 자율 주행에서의 경우보다 더 어렵다. 다양한 군집주행의 안전 위협 요인 중, 의도하지 않은 동작으로부터 자율주행 차량의 안전성을 향상하는 방법을 가이드하기 위하여 새로운 표준 ISO/PAS 21448이 제정되었다. 본 논문에서는 ISO/PAS 21448 표준이 다루는 시나리오를 통해 군집주행에서 발생할 수 있는 의도하지 않은 상황의 극복을 위한 방법을 제시하였다. 특히 군집주행 시뮬레이터인 VENTOS를 이용하여 본 논문에서 제시하는 방법이 안전한 군집주행이라는 목표를 달성할 수 있음을 확인하였다.

A Study on the Applicable Dynamic Platooning in Urban Road Environment (도시 도로 환경에서의 적용 가능한 동적 군집주행에 관한 연구)

  • Choi, Su-Min;Park, Soo-Yong;Shin, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.80-82
    • /
    • 2020
  • 최근 자율주행차량의 기술 개발이 확대되면서 이를 기반으로 운전자, 인프라 등 다양한 관점에서 효과를 기대할 수 있는 군집주행에 대한 관심도 점차 높아지고 있다. 현재 고속도로에서만 적용 가능한 군집주행 기술이 상용화 되면서 교차로가 많은 도시 도로 환경에서도 이를 적용하기 위해 여러 자동차 업체에서 시스템을 개발 중이다. 하지만 기존 군집주행 방식은 군집이 해체될 경우 차량이 다시 군집을 형성하고 다른 군집에 가입하는 과정에서 발생하는 시간이나 비용적인 측면에서 도로 처리량과 시간 단축이라는 본래 군집주행의 목표에 미치지 못한다. 따라서 본 논문은 차량 간에 주고받는 메시지를 개선하여 군집주행 알고리즘을 새롭게 설계해 도시 도로 환경에서도 적용 가능한 동적 군집주행에 대해 제안하였다.

Impacts of Automated Vehicle Platoons on Car-following Behavior of Manually-Driven Vehicles (군집주행 환경이 비자율차량의 차량 추종에 미치는 영향분석)

  • Suh, Sanghyuk;Lee, Seolyoung;Oh, Cheol;Choi, Saerona
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.107-121
    • /
    • 2017
  • This study conducted a 3-stage survey and simulation experiment to identify the impact of vehicle platoons on car-following behavior of manually-driven vehicles. Vehicle maneuvering data obtained from driving simulations was statistically analyzed based on three measures including average speed, acceleration noise, and offset to represent the deviation of lateral movements. Results indicate that MV drivers tended to have psychological burden while driving in automated vehicle platooning environments, which resulted in different vehicle maneuvers. It is expected that the outcome of this study would be useful fundamentals in developing various traffic operations strategies for managing mixed traffic stream consisting of MVs and autonomous vehicles.

VENTOS-Based Platoon Driving Simulations Considering Variability (가변성을 고려하는 VENTOS 기반 군집 자율주행 시뮬레이션)

  • Kim, Youngjae;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • In platoon driving, several autonomous vehicles communicate to exchange information with each other and drive in a single cluster. The platooning technology has various advantages such as increasing road traffic, reducing energy consumption and pollutant emission by driving in short distance between vehicles. However, the short distance makes it more difficult to cope with an emergency accident, and accordingly, it is difficult to ensure the safety of platoon driving, which must be secured. In particular, the unexpected situation, i.e., variability that may appear during driving can adversely affect the safety of platoon driving. Because such variability is difficult to predict and reproduce, preparing safety guards to prevent risks arising from variability is a challenging work. In this paper, we studied a simulation method to avoid the risk due to the variability that may occur while platoon driving. In order to simulate safe platoon driving, we develop diverse scenarios considering the variability, design and apply safety guards to handle the variability, and extends the detail functions of VENTOS, an open source platooning simulator. Based on the simulation results, we have confirmed that the risks caused form the variability can be removed, and safe platoon driving is possible. We believe that our simulation approach will contribute to research and development to ensure safety in platoon driving.

Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance (화물차 군집주행 간격에 따른 운전자의 운전수행능력별 심리상태 및 주행안전성 비교 연구)

  • Park, Hyun jin;Park, Jae beom;Lee, Ki young;Song, Chang jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.147-161
    • /
    • 2021
  • The purpose of this study was to investigate the psychological state and driving safety of drivers driving around the truck platoon driving. Using the driving simulator, the experimental environment was constructed with the situation of changing lanes to the platoon and driving within the platoon. We tried to qualitatively and quantitatively analyze the driver's psychological state and driving safety through simulation driving experiments. As a result, in the case of the older driver group, there were many cases where they judged themselves to be driving safely, even though they were driving dangerously in the actual lane change to the platoon or driving within the platoon. In particular, this group showed that the narrower the distance between vehicles, the greater the misrecognition. The results of this study are expected to be useful in deriving the optimum interval when the interval between platooning of trucks needs to be temporarily extended.

A Study on the Bus of Platooning with C-V2X (C-V2X를 활용한 군집주행 버스에 대한 연구)

  • Back, Jae-hee;Shin, Yong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.325-328
    • /
    • 2018
  • With the rapid development of autonomous driving technology, commercialization of freight cars and buses as well as passenger cars has come to the near future. As researches for commercialization of autonomous navigation are being actively carried out in various countries around the world, in accordance with the development of technology, this paper proposes a bus adopting a new concept of community driving technology based on C-V2X for more effective autonomous driving of buses do. In order to realize the cluster bus, we propose a more effective cluster bus using C-V2X, which is the core communication of the cluster driving, which is complementary to the existing V2X for inter-vehicle communication and vehicle-to-infrastructure communication.

  • PDF

Analysis of the Effects of the Truck Platooning Using a Meta-analysis (메타분석을 이용한 화물차 군집주행의 효과 분석)

  • Kim, Yejin;Jeong, Harim;Ko, Woori;Park, Joong-gyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • The platooning refers to a form in which one or more following vehicles along the path of the leading vehicle(directly driven by the driver) drive in one platoon using V2V, V2I communication and vehicle-mounted sensor. Platooning has emerged in line with the increasing demand for cargo volume and advanced transportation logistics systems, and is expected to have effects such as increasing capacity, reducing labor costs, and reducing fuel consumption. However, compared to general passenger cars, research on autonomous driving of trucks and verification of their effects are insufficient. Therefore, in this study, meta-analysis was conducted on the theme of the effect of truck platooning, and the results of existing studies related to platooning effects were integrated into one reliable, generalized, and objective summary estimate. In conclusion, it was analyzed that the introduction of truck platooning would have an effect of 13.93% increase in capacity, 38.76% decrease in conflict, and 8.13% decrease in fuel consumption.

A Methodology to Establish Operational Strategies for Truck Platoonings on Freeway On-ramp Areas (고속도로 유입연결로 구간 화물차 군집운영전략 수립 방안 연구)

  • LEE, Seolyoung;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.67-85
    • /
    • 2018
  • Vehicle platooning through wireless communication and automated driving technology has become realized. Platooning is a technique in which several vehicles travel at regular intervals while maintaining a minimum safety distance. Truck platooning is of keen interest because it contributes to preventing truck crashes and reducing vehicle emissions, in addition to the increase in truck flow capacity. However, it should be noted that interactions between vehicle platoons and adjacent manually-driven vehicles (MV) significantly give an impact on the performance of traffic flow. In particular, when vehicles entering from on-ramp attempt to merge into the mainstream of freeway, proper interactions by adjusting platoon size and inter-platoon spacing are required to maximize traffic performance. This study developed a methodology for establishing operational strategies for truck platoonings on freeway on-ramp areas. Average speed and conflict rate were used as measure of effectiveness (MOE) to evaluate operational efficiency and safety. Microscopic traffic simulation experiments using VISSIM were conducted to evaluate the effectiveness of various platooning scenarios. A decision making process for selecting better platoon operations to satisfy operations and safety requirements was proposed. It was revealed that a platoon operating scenario with 50m inter-platoon spacing and the platoon consisting of 6 vehicles outperformed other scenarios. The proposed methodology would effectively support the realization of novel traffic management concepts in the era of automated driving environments.

A Study on the Impacts of Truck Platooning on Freeway Traffic-Flow and the Effect of Dedicated Lane (고속도로 화물차의 군집주행이 교통류에 미치는 영향 및 전용차로 효과 연구)

  • KIM, Joohye;Lee, YoungIhn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.52-69
    • /
    • 2020
  • Considering the need for an infrastructure-level review, this study analyzed the impact of truck platooning on freeway traffic flow and the effect of dedicated lanes based on domestic road and traffic conditions. According to the study, the higher traffic volume and truck ratio, the higher ratio of platoons and the greater size of platoons are formed, which results in greater effect of increasing the average speed of the network. Therefore, the routes with heavy traffic and heavy cargo traffic could be positively considered for truck platooning. However, the analysis showed that the effect of increasing the average speed of the entire network is difficult to expect in the event of a queue due to entry and exit, and that the overall network's throughput could be reduced. Therefore, traffic operation strategies associated with the access road, such as securing capacity of the connection, are needed to maximize the effect of truck platooning. When it comes to the effect of dedicated lane, it could have a positive effect only if one lane was fully operated by automated trucks under the condition of 100% MPR, which allowed positive effects in all aspects, such as higher average speed, throughput, and reduced conflict rates.

Methodology for Determining Promising Freeway Segments for Truck Platooning (고속도로 화물차 군집주행 적용구간 선정 연구)

  • JO, Young;KWON, Kyeongjoo;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.98-111
    • /
    • 2018
  • Truck platooning, which is a cluster of trucks in support of vehicle-to-vehicle communication and automated longitudinal vehicle control, is a promising method to both operational efficiency and prevent traffic crashes. Although a variety of studies have been conducted to identify the effects of vehicle platooning on traffic stream, we are not aware of any study attempting to identify promising road segments for vehicle platooning. This study aims to develop a methodology for determining the priority of freeway segments that would potentially lead to maximize the effectiveness of truck platooning. Evaluation measures derived in this study includes truck crash rates, the percentage of truck traffic, segment length, and the number of entry and exit points. Weighting values obtained from an analytical hierarchical process (AHP) method were applied to compute the proposed priority score to determine better freeway segment for truck platooning. Results suggested that a 46.9km freeway segment, from Sacheon IC to Sanin JC, was the most promising segment for maximizing the effectiveness of truck platooning. It is expected that the outcome of this study would be effectively used as a fundamental to establish operational strategies for truck platooning.