• Title/Summary/Keyword: 군용 전원

Search Result 15, Processing Time 0.019 seconds

High Reliability Rx Power System Design for Military VoIP Phone (군용 VoIP 전화기를 위한 고신뢰성 Rx 전력 시스템 설계)

  • Park, Kyung-Hwa;Park, Hyun-Jeong;Kim, Hyeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.857-864
    • /
    • 2020
  • The multi-functional VoIP phone supports the Ethernet protocol in the TIPS(: Tactical IP Switch), which is one of the sub-systems of the tactical information and communication system (TICN). It provides secured voice / video calls in conjunction with VoIP exchanges and supports differential services such as multi-party calls and command functions. In this paper, improving methods have been proposed to reduce power supply defects in the field of multi-functional VoIP phones. The power supply part was improved by applying TVS of the output voltage inlet of the dedicated adapter of the multi-functional VoIP phone, TVS of the PoE module input, adding blocking diodes, and adding DC / DC converters behind the poly-switch. Also, functional and environmental tests were performed to verify the validity of the proposed methods.

Operational Reliability Improvement of Power Converter by Improving the Inrush Current Limiter (돌입전류 제한회로 개선을 통한 전원변환장치 운용신뢰성 향상)

  • Yoon, Jae-Bok;Ryu, Seo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.719-724
    • /
    • 2016
  • This paper describes the performance improvement of an inrush current limiter to prevent damage or malfunctions in power converters due to the inrush current. When the power converter of military radar is operated, the circuit breaker of the power converter is often activated because the overcurrent flows through the circuit breaker of the power converter. Therefore, this study performed a cause analysis of the problem, which is a larger current flow than the intended current(250A). The operation principle of an inrush current limiter and SCR (Silicon Controlled Rectifier) used in the inrush current limiter was analyzed. As a result, the overcurrent flow through the circuit breaker was found to be due to dv/dt triggering of SCR. Based on cause analysis, this paper proposes a technique by adding the resistor in front of the SCR to prevent an unnecessary inrush current. Finally, the effectiveness of the improvement was verified by measuring the output current in the inrush current limiter. The power converter equipped with the improved inrush current limiter operated for more than 1 year without the circuit breaker of the power converter being activated.

Design of a 500W Class Micro Turbine Generator System as a Next Generation Military Power Source (차세대 군용전원용 500W급 마이크로 터빈 발전기 시스템 설계)

  • Choi, Sang-Kyu;Choi, Bum-Suk;Han, Yong-Shik;Woo, Byung-Chul;Song, In-Hyuck;Min, Seong-Ki;Lim, Jin-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1192-1197
    • /
    • 2011
  • Recent developments of small-size unmanned or manned mobile systems such as autonomous robots, exoskeleton or armored suits, micro air vehicles, and unmanned armored vehicles require long-lasting independent power sources of high energy and power density to support the systems' operation for up to 72 hours in the fields. Chemical batteries such as Ni-MH, Li-Ion, the current primary power sources for mobile devices, however, are not capable of providing enough power and energy density for the next generation high power mobile machines. For this reason, KIMM along with KERI and KIMS has been carrying out a 500W MTG development project under the DAPA's "Next generation military power source R&D program" since 2009. In this paper, a design process for a 500W MTG system currently being developed at KIMM is briefly described and the technical issues related to its development are addressed.

Development of 2-kW Class C Amplifier Using GaN High Electron Mobility Transistors for S-band Military Radars (S대역 군사 레이더용 2kW급 GaN HEMT 증폭기 개발)

  • Kim, Si-Ok;Choi, Gil-Wong;Yoo, Young-Geun;Lim, Byeong-Ok;Kim, Dong-Gil;Kim, Heung-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2020
  • This paper proposes a 2-kW solid-state power amplifier (SSPA) developed by employing power amplifier pallets designed using gallium-nitride high electron mobility transistors, which is used in S-band military radars and to replace existing traveling-wave tube amplifier (TWTA). The SSPA consists of a high-power amplifier module, which combines eight power amplifier pallets, a drive amplifier module, a digital control module, and a power supply unit. First, the amplifier module and component were integrated into a small package to account for space limitations; next, an on-board harmonic filter was fabricated to reject spurious components; and finally, an auto gain control system was designed for various duty ratios because recent military radar systems are all active phase radars using the pulse operation mode. The developed SSPA exhibited a max gain of 48 dB and an output power ranging between 63-63.6 dBm at a frequency band of 3.1 to 3.5 GHz. The auto gain control function showed that the output power is regulated around 63 dBm despite the fluctuation of the input power from 15-20 dBm. Finally, reliability of the developed system was verified through a temperature environment test for nine hours at high (55 ℃) / low (-40℃) temperature profile in accordance with military standard 810. The developed SSPA show better performance such as light weight, high output, high gain, various safety function, low repair cost and short repair time than existing TWTA.

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.