• Title/Summary/Keyword: 군사시뮬레이션

Search Result 204, Processing Time 0.016 seconds

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

A Study on the Effect of the Use of Reserve Officers on the Military (예비역 간부 활용이 군에 미치는 효과 연구)

  • Han, Bongkyu;Yang, Gumyong;Kim, Gakgyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2020
  • Korea Ministry of National Defense has directed the state-of-the-art technology Forces troops structures that can respond to security threats in all directions through the Defense Innovation 2.0, which aims to reorganize the personnel and organizations in response to population decline. An implement of effective analysis to maintain combat power is necessary due to possible restrictions on combat power, especially in division of mobilization where reserve manpower is operated frequently. In this study, the normal operations of the reserve officers were investigated, the direct effects of the combat forces of the reserve officers was analyzed using ARENA modeling, and the budget required to operate the innovation and indirect effects of employment of veterans were studied. The result of the simulation proved to be effective in demonstrating unit combat power when the reserve officer was in full-time operations and economic benefits were also significant in terms of efficiency of defense budget management.

Performance Prediction and Analysis of Identification Friend or Foe(IFF) Radar by using Modeling & Simulation Methodology (M&S 기법을 통한 피아식별 레이다 성능예측 및 분석)

  • Kim, Hyunseung;Park, Myunghoon;Jeon, Woojoong;Hong, Sungmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.159-167
    • /
    • 2020
  • In actual battlefield environment, IFF radar plays an important role in distinguishing friend or foe targets and assigning unique identification code to management. Performance of IFF radar is greatly affected by radio environment including atmosphere and terrain, target maneuvering and operation mode. In this paper, M&S tool is consisted of interrogator(IFF radar) and answering machine(target) for radar performance analysis. The wave propagation model using APM(Advanced Propagation Model) and radar actuator system were modeled by considering beam waveform of individual operation beam mode. Using this tool, IFF radar performance was analyzed through two experimental results. As a result, it is expected that performance of IFF radar can be predicted in the operational environment by considering target maneuvering and operation beam mode.

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

A Study on M&S Environment for Designing the Autonomous Reconnaissance Ground Robot (자율탐색 로봇 설계를 위한 M&S(Modeling & Simulation) 환경 연구)

  • Kim, Jae-Soo;Son, Hyun-Seung;Kim, Woo-Yeol;Kim, R. Young-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.127-134
    • /
    • 2008
  • An autonomous reconnaissance ground robot performs its duty in various different environments such as mountain-scape, desert and under-water through changing its shape and form according to the environment it is working in. Making a prototype robot for each environment requires extra cost and time. It is also difficult to modify the problem after production. In this paper, we propose the adoption of M&S(Modeling & Simulation) environment for the production and design of the autonomous reconnaissance ground robot. The proposed method on the M&S environment contributed to the more effective and less time consuming production of the robot through the Pre-Modeling and Pre-Simulation process. For example, we showed the design and implementation of the autonomous reconnaissance ground robot under the proposed environment and tools.

Application and Determination of Defended Footprint Using a Simulation Model for Ballastic Missile Trajectory (탄도미사일 궤적 시뮬레이션 모델을 이용한 방어영역 산출 및 응용)

  • Hong, Dongwg;Yim, Dongsoon;Choi, Bongwhan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 2018
  • Footprint is defined as ground area that is projected from the outer edges of the battle space protected by a defence system. This concept can be effectively used for making decisions on site selection of anti missile systems to defend against enemy's ballistic missiles. In this paper, simulations of ballistic missile trajectories based on various launch conditions are performed first and then the footprint is derived with engagement zone set as a boundary condition. Results of the simulation with various relative positions between the defense system and defended asset are also presented. The proposed method, in which the trajectories are generated based on launch point of the ballistic missile, has an advantage of approximating the defended area close to reality. Two applications are introduced in the present paper to describe how the derivation of defended area could be utilized in deployment decision of defense systems.

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

The Functional Extension of the Underwater Vehicle Modeling and Simulation Tactics Manager using the Script Embedding Method (스크립트 임베딩을 활용한 수중운동체 M&S 전술처리기의 기능 확장)

  • Son, Myeong-Jo;Kim, Tae-Wan;Nah, Young-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.590-600
    • /
    • 2009
  • In the simulation of underwater vehicles such as a submarine or a torpedo, various type of simulations like an engineering level simulation for predicting the performance precisely and an engagement level simulation for examining the effectiveness of a certain tactic is required. For this reason, a tactics manager which can change the behavior of a simulation model according to external tactics is needed. In this study the tactics manager supporting a script language and engine which can represent various tactics and can help users define external input tactics for the tactic manager easily is suggested. Python and Lua which are representative among script languages have been compared and analyzed from the viewpoint of a tactic manage, and the tactic manger using the script engines of those script languages was implemented. To demonstrate the effectiveness of the tactic manager, a target motion analysis simulation of the warfare between a submarine and a surface ship.

An Air Defence M&S Architecture Design Framework for a Reusability (재사용을 위한 방공 M&S 아키텍처 설계 프레임워크)

  • Yun, Keunho;Shim, Shinwoo;Hwang, Jongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-662
    • /
    • 2014
  • In the development of the weapon systems, utilization of Modeling & Simulation is growing in every aspect of development process. For the higher utilization of M&S, reuse of the M&S resources is needed to reduce the cost of M&S. I propose the M&S architecture framework that can enhance the reusability of the M&S resources in developing surface-to-air weapon systems. This M&S architecture design framework enables interoperability between the system and sub-systems. In this paper, the advantage and the necessity of the M&S architecture design framework will be described by introducing the cases that the M&S architecture framework reused in the combat experiments, the system development tests, the system operational tests and the concept developments in real projects. These cases will show the high reusability and efficiency of the M&S architecture design framework.

A Development of Instrumentation Radar Tracking Status Simulator (계측레이더 추적 시뮬레이터 개발)

  • Ye, Sung-Hyuck;Ryu, Chung-Ho;Hwang, Gyu-Hwan;Seo, Il-Hwan;Kim, Hyung-Sup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.405-413
    • /
    • 2011
  • Defense Systems Test Center in ADD supports increasingly various missile test requirements such as higher altitude event, multi target operation and low-altitude, high velocity target tracking. In this paper, we have proposed the development of instrumentation radar tracking status simulator based on virtual reality. This simulator can predict the tracking status and risk of failure using several modeling algorithms. It consists of target model, radar model, environment model and several algorithms includes the multipath interference effects. Simulation results show that the predict tracking status and signal are similar to the test results of the live flight test. This simulator predicts and analyze all of the status and critical parameters such as the optimal site location, servo response, optimal flight trajectory, LOS(Line of Sight). This simulator provides the mission plan with a powerful M&S tool to rehearse and analyze instrumentation tracking radar measurement plan for live flight test at DSTC(Defense Systems Test Center).