• Title/Summary/Keyword: 국부 보이드율

Search Result 4, Processing Time 0.017 seconds

Effects of Flow Diretion and Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Two-Phase Flow(I) - In Case of Upward Flow - (수직이상유에서 유동방향과 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (I))

  • 손병진;김인석;김문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.856-866
    • /
    • 1987
  • In the present paper a statistical method using probability density function has been applied to investigate experimentally the flow patterns and fluctuations of time-averaged local void fraction in air-water two-phase mixtures which flow vertically upwards in concentric annuli. This study was carried out using three vertical concentric annuli. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel inner rod. The rod diameter is either 12mm, 16mm or 20mm. The two-phase flow patterns observed in the experiment were bubbly, slug, annular and each transition patterns. It was first demonstrated that the variance, coefficients of skewness and kurtosis calculated from probability density function on time-averaged local void fraction can be used to identify the flow patterns in the annular passage, and the fluctuation of time-averaged local void fraction varies with the radial position in annular gap and the flow pattern.

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow (전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구)

  • Cha, Kyong-Ok;Kim, Bong-gag;Kim, Jea-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.

The Characteristics of Two Phase Flow by Non-Newtonian Fluid for Vertical Up-ward in a Tube (수직 상향유동 배관에서 비뉴톤유체에 의한 2상류의 유동특성)

  • Cha K.O.;Kim J. G.;Che K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.53-59
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure drop, void fraction, and channel geometry. Drag reduction in the two phase flow can be applied to the transport of crude oil, phase change systems such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced and void fraction by Co-polymer(A611p) addition in the two phase flow system. We find that the maximum point position of local void friction moves from the wall of the pipe to the center of the pipe when polymer concentration increases. Also we find that the polymer solution changes the characteristics of the two phase flow. And then we predict that it is closely related with the drag reduction.

  • PDF