본 논문에서는 웨이브릿 변환과 유전자 알고리즘을 이용한 하이브리드 영상복원 방법을 제안한다. 제안한 방법은 영상복원을 위한 전처리로써 분해 및 합성 필터의 이상적인 직교 특성을 가지는 웨이브릿 변환을 이용하여 잡음훼손영상으로부터 고주파성 잡음의 일부를 우선 제거하고 나머지 영상에 대해서는 국부적 최적해로의 고립을 벗어나 전역해 탐색이 가능한 유전자 알고리즘을 적용한다 제안한 하이브리드 방법의 성능평가를 위하여 이진 문자영상과 Lenna 영상을 입력영상으로 인가하여 기존의 단일 유전자 알고리듬을 이용한 방법과 비교실험을 수행하였다. 실험결과 제안한 하이브리드 영상 복원방법이 기존의 방법에 비하여 약 2dB 향상됨으로써 잡음훼손영상의 복원성능이 우수함을 확인하였다.
프랙탈을 기반으로 한 칼라 영상 부호화는 영상을 RGB,YIQ나 CMYK와 같은 기본적인 채널로 분리한 후, 각각의 채널을 독립적으로 프랙탈 이진 영상 부호화 기법에 적용함으로써 쉽게 부호화할 수 있다. 그러나 이 방법은 각각의 채널에 대해 부호화를 반복해야 하기 때문에 많은 계산 시간이 필요하다는 단점이 있다. 본 논문에서는 이러한 단점을 개선하기 위하여 국부적 지역 탐색법을 사용하였으며, 압축률 향상을 위해 각 채널마다 사람의 눈에 느껴지는 민감성의 정도가 다른 YIQ 모델을 사용하여 I나 Q 채널보다 Y채널에 더 많은 비트를 할당하였다. 각각의 치역 블록에 대하여 Y채널에 가장 잘 매칭이 되는 정의역 블록을 찾았으며, I와 Q 채널을 위해서는 잘 매칭이 되는 대응 블록을 이용하였다. 따라서 각각의 YIQ채널을 위한 최적의 변환식을 계산하는 과정에서 단지 하나의 기하학적인 변환식(변환과 선택된 정의역 블록의 주소)만이 필요할 뿐이다. 이러한 접근 방법은 기존의 부호화 방법들과 비교해 볼 때 부호화 시간의 단축과 압축률 향상을 동시에 얻을 수 있다.
This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.
인공 신경망은 빠른 속도와 안정성 등의 많은 장점을 갖고 있기 때문에 최근 들어서 여러 분야 에서 그 응용이 활발히 연구되고 있다. 인공 신경망의 한 모델인 홉필드 네트워크는 네트워크의 에너지를 최소화시키는 방향으로 네트워크의 상태를 바꾸며, 최소 에너지 상태에서 안정 상태를 유지하는 특징을 갖고 있다. 이러한 흡필드 네트워크의 특징은 흡필드 네트워크를 최적화 문 제에 적용시킬 수 있는 가능성을 제시하고 있다. 기존의 최적화 기법은 기본적으로 국부적인 탐색 기법을 사용하기 때문에, 전역적 최적해를 구하기 위해 초기점을 달리하여 여러번 계산을 수행하여 그 중 가장 좋은 결과를 취하는 방법을 사용하여야 한다. 따라서 이러한 방법은 초 기점의 선택이 결과에 큰 영향을 미치게 되는데, 설계 변수가 많고 제한 조건이 복잡할 경우 초기점 선택에 어려움이 따른다. 본 연구에서는 흡필드 네트워크와 시뮬레이티드 어닐링을 결 합하여 전역적 최적해를 찾는 기법으로서 뉴드-옵티마이저 모델을 제시하고 있다.
본 논문에서는 교량의 볼트 체결부, 응력집중부 등 손상의 발생이 유력한 위치에 부착된 압전센서-무선 임피던스 센서노드를 통해 구조물의 건전성을 지속적으로 모니터링 하는 시스템을 소개하였다. 임피던스 기반 건전성 모니터링에 있어서 구조물에 발생하는 손상에 따라 민감하게 반응하는 주파수 성분이 달라지기 때문에, 이러한 주파수 영역을 자동으로 결정함과 동시에 손상에 관한 정보를 획득하기 위하여 인공신경망 기법을 적용하였다. 제안된 기법은 기존에 구축되어 있는 데이터베이스를 기반으로 구조물에 발생한 손상의 종류 및 손상의 정도를 판단하는 것을 목적으로 한다. 무선 임피던스 센서노드-인공신경망 기반 손상탐색 통합 시스템은 실제 강교량에서 발생한 볼트풀림, 균열 등 국부적인 손상의 진단을 위하여 적용되었으며, 그 유효성을 입증하였다.
능동 감시 카메라에서 얻어진 연속 영상에는 카메라의 움직임에 의해 발생하는 전역 움직임과 이동 물체의 국부 움직임이 동시에 존재한다. 따라서 이동 물체의 자동 추적을 위한 영상 기반의 실시간 감시 시스템의 구현을 위해 이동 물체의 국부 움직임만을 검출하고 추적할 수 있는 효과적인 알고리즘이 요구된다. 이 논문에서는 연속 영상의 차영상을 이용하는 빠르고 효율적인 움직임 검출 및 추적 알고리즘을 제안한다. 이 알고리즘은 우선 물체의 속도를 고려하여 이전 영상을 선택하고. 현재 영상과 선택된 이전 영상에 존재하는 전역 움직임을 빠르고 정확하게 추정하기 위해 신뢰성 있는 소수의 정합 블록만을 선택하여 사용한다. 마지막으로 현재 영상과 전역 움직임이 보상된 이전 영상의 차영상을 얻고, 현재 영상과 차영상의 상관 관계를 이용하여 차영상에 존재하는 강한 잡음을 효과적으로 제거하여 이동 물체 영역을 추출한다. 팬틸트 유닛과 AMD 800MHz 프로세서가 내장된 PC로 구성된 능동 카메라 시스템에 제안한 알고리즘을 적용하였다. 이 시스템은 320$\times$240 크기의 영상을 처리하며 수평 수직 방향의 $\pm$20 탐색 영역에서 전역 움직임을 추정할 때 약 50 frames/sec 의 속도로 움직임 검출이 가능하므로 빠른 이동 물체의 실시간 추적에 적합하다.
본 논문은 구조물 보강을 위해 부착된 CFRP 쉬트의 박락 위치를 탐색하기 위해 BOTDR 센서를 적용한 실험적 연구 결과를 보고한다. CFRP 쉬트를 부분적으로 비부착한 실험체가 본 연구를 위해 제작되었으며, 그 위에 BOTDR 센서를 나일론 망을 이용하여 부착되었다. 보강된 RC 보의 휨실험 동안 CFRP 쉬트의 변형률은 BOTDR 센서와 전기저항식 게이지를 통해 계측되었다. 연구결과로부터 BOTDR 센서를 통해서 획득된 변형률 분포는 CFRP 보강재의 탈락 구간을 시각화하고, 탐지하는데 효과적으로 이용될 수 있음이 확인되었다. 또한 BOTDR 센서를 통해 계측된 변형률은 국부적인 변형률이 얻어지는 전기저항식 게이지보다 구조물 전체의 거동을 분석하는데 효과적임이 확인되었다. 100 mm 이하의 계측장을 갖는 BOTDR 센서의 개발은 CFRP 쉬트의 국부적인 탈락의 위치의 정확한 탐지를 가능하게 할 것으로 판단된다.
수동 소나를 이용하여 기동 표적의 위치를 추정하는 정합-표적모델 역산 기법을 개발하였다. 본 기법은 수중음향학 분야에서 널리 사용되는 정합장 역산 방법을 이용하여 관측으로부터 얻어지는 방위와 주파수를 표적모델에 의해 계산되는 값과 정합 시킴으로써 표적의 위치를 파악한다. 효율성과 정확성을 향상시키기 위하여 변수의 탐색 방식은 혼성 최적화 기법을 이용하였는데 일차적으로 광역 최적화 기법으로 알려진 유전자 기법이나 모사 담금질 기법을 적용한 후 단순 비탈 국부최적화 기법을 순차적으로 적용하였다. 제안 기법의 성능 검증을 위하여 3가지의 기동 시나리오에 대하여 시뮬레이션을 실시하였다. 검증 결과 가우시안 확률분포를 갖는 측정오차가 5σ를 가지는 경우에도 견실한 수렴을 보여주었으며 계산 시간면에서도 실용적 인 것으로 밝혀졌다.
본 연구에서는 모바일 레이저 스캐닝 데이터로부터 철도 선로탐지 및 선로모델 추출을 위한 방법을 제시하였다. 제안된 방법은 크게 세 단계로 구성된다. 첫째, 레이저 포인트로부터 잠재적인 철도 선로지역을 탐지하고, 초기 철도 선로궤적 방향을 추정한다. 둘째, 철도 선로에 관한 선 지식을 이용하여 첫번째 스트립에서 초기 선로위치를 결정한다. 여기서, 스트립은 국부 탐색공간을 나타내며 철도 선로궤적에 수직인 방향으로 정의된다. 마지막으로, 초기 선로위치에서 GMM-EM기반 분류방법을 통해 선로 포인트들을 탐지한 후 초기 선로 모델을 생성하고 스트립을 데이터 처리 기본단위로 하여 tracking by detection관점에서 연속적으로 선로모델을 생성하였다. 제안된 방법의 주요 특징은 다음과 같다. 첫째, 이전 스트립에서 생성된 선로 모델을 가이드 라인으로 다음 스트립에 전파되어 국부 탐색영역을 예측하여 선로 포인트를 탐지하는 하는데 있어서 처리 복잡성을 줄일 수 있었다. 둘째, 선로 포인트 탐지와 선로 모델링을 동시에 진행 함으로써 데이터 처리 시간을 최소화 할 수 있었다. 개발된 알고리즘은 C++ 프로그램 언어로 구현되었고 도시지역에서 MMS 측량을 통해 취득된 LiDAR 데이터(경부선 일부 구간)를 이용하여 성능 테스트를 진행하였다.
본 논문은 장애물 회피 능력을 갖는 자발적 주행 로봇 (Khepera)을 제어하는 재귀 신경망을 진화와 학습의 상호 적응에 의해 결정하는 방안을 제시한다. 제안한 동시 적응 방안은 다음 두 가지 성질을 갖는다. 유전자 알고리즘에 의해 해집단내 여러 개의 신경망 제어기들은 전역적 탐색을 수행하여 점진적으로 장애물과의 충돌이 적게 일어나도록 진화되고, 동시에 각 신경망 제어기는 상보적 재강화 역전파 (CRBP: Complementary Reinforcement Backpropagation) 학습에 의해 국부적 탐색을 수행하여 주행 특성이 로봇이 처한. 외부 환경에 적응되어진다. 실험 결과, 학습과 결합한 진화에 의해 얻어진 신경망 제어기가 진화자체만에 의해 얻어진 신경망 제어기보다 더 나은 충돌 회피 능력을 보여 주며, 원하는 주행 성능에 보다 빨리 도달하는 것을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.