• Title/Summary/Keyword: 국부거동

Search Result 440, Processing Time 0.024 seconds

Numerical simulation of local scour around porous type fish reef (다공성 인공어초의 국부세굴 특성 분석 수치모형실험)

  • Yoon, Jae Seon;Lee, Ji-Hun;Shin, Choong Hun;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.233-233
    • /
    • 2019
  • 본 연구에서는 3형식 다공성 인공어초의 국부세굴 발생에 따른 인공어초의 안정성 검토를 위하여 3차원 수치모형인 FLOW-3D의 Sediment 모듈을 적용하여 분석을 실시하였다. 실험파랑 설정을 위하여 인공어초 설치 예정지인 서해 대상해역(대청도, 연평도 인근)의 100년 빈도 설계파랑을 적용하였으며, Bretschneider-Mitsuyasu 스펙트럼 기법을 통하여 파랑을 재현하였다. 원형상격자 조건은 최대 0.1m~2.0m에 해당하며, 수치모형실험 해석 시간을 고려하여 입사파랑의 진행방향으로 인공어초의 1/2 폭에 해당하는 X축(190개), Y축(80개), Z축(110~180개) 영역에 대한 격자조건 설정하고 분석을 실시하였다. 분석은 인공어초 하중에 따른 동적 거동을 반영하는 FSI(Flood Structure Interaction)기법을 적용하였으며, 분석결과 인공어초 구조물 하단의 돌출부분에서 세굴발생이 확인되었으며, 최대세굴심은 3형식 인공어초의 규격 및 단위체적당 중량이 클수록 높게 발생하였다.

  • PDF

Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior (국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정)

  • Kim, JoungRae;Lee, WonHo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2017
  • In this paper, finite element analysis of Steel-Concrete panel(SCP) was conducted considering the local buckling behavior and the optimized design of shear studs arrangement was studied by comparing with design guidelines. If the spacing of the studs of SCP is widened, it is easy to be manufactured and the weight fo members become lighter. On the other hand, the steel plate would be vulnerable to the local buckling behavior. Therefore, the guidance and design of SCP limit the maximum spacing of the studs to prevent the development of shear cracks and local buckling, however this is based on the design criteria of the other composite structures. Parameter studies with changes in stud spacing on steel plate and SCP are conducted and the obtained result was compared with values given in design guidelines.

Modelling for Cyclic Behavior of the Panel Zone (패널 영역의 주기거동에 대한 모델링)

  • Kim, Kee Dong;Lee, Hak Eun;Ko, Man Gi;Kil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.139-147
    • /
    • 1997
  • 본 논문은 단조하중(monotonic loading)하의 강재 보-기둥의 절점의 패널 영역 거동을 연구한 논문(Kim 1997)의 후속 논문으로 주기하중에 대한 패널영역의 거동을 해석하기 위한 이력법칙(hysteretic rules)에 관한 것이다. 제안된 이력법칙은 실험결과와 합당한 상관관계를 보여주었고, 이 이력법칙을 사용한 패널영역요소의 해석 결과가 실험결과와 잘 일치하는 것으로 나타났다. 한편 보강판(a doubler plate)을 갖는 패널영역에 대한 해석과 실험결과로 부터 보강판이 패널영역전달력 (panel zone shear force)을 저항하는데 있어 부분적인 효과만 있다는 것을 알 수 있었다. 제안된 패널영역요소는 구조물의 전체 거동과 국부 변형을 기존의 패널영역요소(bilinear panel zone element)보다 정확하게 예측 할 수 있었다.

  • PDF

Experimental Study on Performance Evaluation of Steel Frame with Buckling Control Brace (좌굴제어 가새를 가진 가새골조의 성능향상에 관한 실험적 연구)

  • Lee, Sang-Ju;Han, Sang-Eul;Noh, Sam-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.181-188
    • /
    • 2007
  • This research presents two methods to prevent local buckling from circular tube brace and then verify their performance capacity through a cyclic loading test. As control methods on local buckling, one is to restrict local buckling as attaching cover plate at range of buckling. And the another is to exclude danger of buckling as inserting contraction device with rod and spring at the center of brace. The purpose of this research is to develop structural device for restriction of local buckling or for exclusion of its. And we investigate appliance of suggested methods through an experiment. We also estimate the improvement of performance capacity in a quantitative respect.

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Morphological Representation of Channel Network by Dint of DEM (DEM을 이용한 수로망의 형태학적 표현)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.287-297
    • /
    • 2007
  • The procedures for identifying channel network are suggested by exploring the scaling property between the local slope and the contributing area, given that the area threshold criterion is an indispensable complement to the slope-area threshold criterion. Through the use of the above procedures and the field data, the basin slopes illustrate the trends of large scatters in space for the geomorphologic/topographic factors. According to the scaling regimes of them both the forms of landscape can be classified as topographic divergence and convergence. The presentation of the procedures proposed in this study is implemented in the case study on Seolma experimental catchment in Korea. As a result the dynamic behaviors of basin are confirmed, and thus the dynamics of channel head advance and channel network are shown to represent better than the method using the topographic chart manually.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.